Skip to main content
Log in

Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 °C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography–mass spectrometry. The thermal treatment produced acetic acid and CO2. The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perry RS, Kolb VM (2004) On the applicability of Darwinian principles to chemical evolution that led to life. Int J Astrobiol 3(1):45–53

    Article  CAS  Google Scholar 

  2. Negrón-Mendoza A, Ramos-Bernal S (2000) In: Chela-Flores J, Lemarchand G, Oró J (eds) Astrobiology: origins from the Big Bang to civilization. Kluwer Academic Publisher, Dordrecht, pp 71–84

    Chapter  Google Scholar 

  3. Miller SL, Orgel L (1974) The origins of life on earth. Prentice-Hall, Inc., Eagle Cliffs

    Google Scholar 

  4. Draganic IG, Draganic ZD, Adloff JP (1990) Radiation and radioactivity. CRC Press Inc, Boca Raton

    Google Scholar 

  5. Negrón-Mendoza A, Albarrán G (1993) In: Ponnamperuma C, Chela-Flores J (eds) Chemical evolution: origin of life. Deepak Publishers, Hampton, pp 147–235

    Google Scholar 

  6. Muller AWJ, Schulze-Makuch D (2006) Thermal energy and the origin of life. Orig Life Evol Biosph 36:177–189

    Article  CAS  Google Scholar 

  7. Russell MJ, Hall AJ (2009) A hydrothermal source of energy and materials at the origin of life. Chemical evolution II: from origins of life to modern society. American Chemical Socity, Washington,DC, pp 45–62

    Google Scholar 

  8. Russell MJ, Hall AJ, Martin W (2010) Serpentinization and its contribution to the energy for the emergence of life. Geobiology. doi:10.1111/j.1472-4669.2010.00249.x

    Google Scholar 

  9. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta 4:59–69

    Google Scholar 

  10. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    Google Scholar 

  11. Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons in the rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett 191:1–8

    Article  CAS  Google Scholar 

  12. Holms N, Andersson E (2005) Hydrothermal simulation experiments as a tool for studies of the origin of life on earth and other terrestrial planets: a review. Astrobiology 5(4):444–460

    Article  Google Scholar 

  13. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    CAS  Google Scholar 

  14. Wächtershäuser G (2010) In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspecstive. Springer, Dordrecht

    Google Scholar 

  15. Stüeken EE, Anderson RE, Bowman JS, Brazelton WJ, Colangelo-Lillis J, Goldman AD, Som SM, Baross JA (2013) Did life originate from a global chemical reactor? Geobiology 11(2):101–126

    Article  Google Scholar 

  16. Miller SL, Bada JL, Friedmann N (1989) What was the role of submarine hot springs in the origin of life? Orig Life Evol Biosph 19:536–537

    Article  Google Scholar 

  17. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  CAS  Google Scholar 

  18. Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig of Life 15:327–345

    Article  CAS  Google Scholar 

  19. Draganic I, Bjergbake E, Draganic Z, Sehested K (1991) Decomposition of ocean waters by 40K radiation 3800 Ma ago as a source of oxygen and oxidizing species. Precambrian Res 52:337–345

    Article  CAS  Google Scholar 

  20. Miller S (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  21. Miller S, Urey H (1959) Organic compound synthesis on the primitive Earth. Science 130:245–251

    Article  CAS  Google Scholar 

  22. Negrón-Mendoza A, Ponnamperuma C (1978) In: Noda H (ed) Origins of life. Center of Scientific Publications, Tokyo, pp 101–104

    Google Scholar 

  23. Negrón-Mendoza A, Ponnamperuma C (1982) Prebiotic formation of higher molecular weight compounds from the photolysis of aqueous acetic acid. Photochem Photobiol 36:595

    Article  Google Scholar 

  24. Lawless JG, Zeitman B, Pereira WE, Summons RE, Duffield AM (1974) Dicarboxylic acids in the Murchison meteorite. Nature 251:40–42

    Article  CAS  Google Scholar 

  25. O’Donnell JHO, Sangster DF (1970) Principles of radiation chemistry. Elsevier, New York

    Google Scholar 

  26. Draganic ID, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New York

    Google Scholar 

  27. Negrón-Mendoza A, Castillo S, Torres JL (1984) Microdeterminación de gases disueltos en soluciones acuosas por cromatografía de gases (in Spanish). Rev Soc Quím Mex 28:21–24

    Google Scholar 

  28. Negrón-Mendoza A, Draganic Z, Navarro R, Draganic IG (1983) Aldehydes, ketones and carboxylic acids formed radiolitically in aqueous solutions of cyanides and nitriles. Radiat Res 95:248–261

    Article  Google Scholar 

  29. Shampine LF (1994) Numerical Solution of Ordinary Differential Equations. Chapman and Hall, New York

    Google Scholar 

  30. Sanchez-Mejorada G, Frias D, Negrón-Mendoza A, Ramos-Bernal S (2008) A comparison between experimental results and a mathematical model of the oxidation reactions induced by radiation of ferrous ions. Radiat Meas 43:287–290

    Article  CAS  Google Scholar 

  31. Simic M, Neta P, Hayon E (1969) Pulse radiolysis of aliphatic acids in aqueous solutions. II. Hydroxy and polycarboxylic acids. J Phys Chem 73:4214–4219

    Article  CAS  Google Scholar 

  32. Sagstuen E, Lund A, Itagaki Y, Maruani J (2000) Weakly coupled proton interactions in the malonic acid radical: single crystal ENDOR analysis and EPR simulation at microwave saturation. J Phys Chem A 104:6362–6371

    Article  CAS  Google Scholar 

  33. Kang J, Tokdemir S, Shao J, Nelson WH (2003) Electronic g-factor measurement from ENDOR-induced EPR patterns: malonic acid and guanine hydrochloride dihydrate. J Magn Reson 165:128–136

    Article  CAS  Google Scholar 

  34. Yamamoto S, Back RA (1985) The photolysis and thermolysis of pyruvic acid in the gas phase. Can J Chem 63:549–553

    Article  CAS  Google Scholar 

  35. Yamamoto S, Back RA (1985) The gas phase photochemistry of oxalic acid. Can J Chem 63:622–625

    Article  Google Scholar 

  36. Back RA, Yamamoto S (1985) The gas phase photochemistry and thermal decomposition of glyoxylic acid. Can J Chem 63:542–548

    Article  CAS  Google Scholar 

  37. Cao JR, Back RA (1986) The thermolysis and photolysis of malonic acid in gas phase. Can J Chem 64:967–968

    Article  CAS  Google Scholar 

  38. Mosqueira FG, Albarran G, Negrón-Mendoza A (1996) A review of conditions affecting the radiolysis due to 40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry. Orig Life Evol Biosph 26:75–94

    Article  CAS  Google Scholar 

  39. Draganic IG, Draganic ZD, Altiparmako D (1983) Natural nuclear reactors and ionizing radiation in the Precambrian. Precambrian Res 20:283–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PAPIIT Grant No. IN110712 and CONACYT Grant No. 168579 supported this work. JCC was supported by a CONACyT fellowship. The support of the “Posgrado en Ciencias Químicas” through the invitation to Prof. D. Frías is acknowledged. We also thank C. Camargo, B. Leal and F. Flores for their technical support. We thank to the reviewers for their very useful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Negrón-Mendoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Castañeda, J., Negrón-Mendoza, A., Frías, D. et al. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid. J Radioanal Nucl Chem 304, 219–225 (2015). https://doi.org/10.1007/s10967-014-3711-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3711-z

Keywords

Navigation