Skip to main content
Log in

Enhanced photodetection properties of GO incorporated flexible PVDF membranes under solar spectrum

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here we report the enhanced photodetection capabilities of graphene oxide (GO) incorporated highly flexible polyvinylidene fluoride (PVDF) membranes when illuminated by solar spectrum. Free-standing and β-crystalline PVDF membranes with varied amount of GO (~ 5%, 10%, 15% and 20%) are fabricated by easy and cost-effective chemical synthesis technique. Significant improvement in dark current as well as solar photocurrent is observed while very small amount of GO are added into the host PVDF matrix at different proportions. For wide band of solar spectrum having input light power of 1 sun (100 mW/cm2), the responsivity for pristine PVDF arises out to be 0.004 µA/cm2/W with response time of ~ 44 s. Due to addition of GO into PVDF the photocurrent and photoresponsivity increased while the response time decreased. Maximum responsivity of 0.026 µA/cm2/W is observed for PVDF/GO (15%) with response time of ~ 21 s. When measured in bending state the flexible polymer composite membranes exhibit better photocurrent compared to their relief condition which is attributed to the piezo-phototronic effect. Complex impedance spectroscopic study at room temperature in dark and light clearly indicates the facilitation of charge transport due to modification of grain boundaries which in turn enhances the photocurrent in PVDF/GO composite membranes making them suitable for flexible photovoltaic and piezo-phototronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao F, Tian W, Meng L, Wang M, Li L (2019) Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction. Adv Funct Mater 29:1808415. https://doi.org/10.1002/adfm.201808415

    Article  CAS  Google Scholar 

  2. Polat E, Mercier G, Nikitskiy I, Puma E, Galan T, Gupta S, Montagut M, Piqueras JJ, Bouwens M, Durduran T, Konstantatos G, Goossens S, Koppens F (2019) Flexible graphene photodetectors for wearable fitness monitoring. Sci Adv 5:9. https://doi.org/10.1126/sciadv.aaw7846

    Article  CAS  Google Scholar 

  3. Guo H, Saifi S, Fukuda K, Cheng HM, Lou Z, Xu X (2021) Flexible organic photodetectors and their use in wearable systems. Digit Signal Process. https://doi.org/10.1016/j.dsp.2021.103145

    Article  Google Scholar 

  4. Vafaie M, Fan J, Najarian AM, Ouellette O, Sagar LK, Bentens K, Sun B, de Arquer FPG, Sergent EH (2021) Colloidal quantum dot photodetectors with 10 ns response time and 80% quantum efficiency at 1550 nm. Matter 4:1042–1053. https://doi.org/10.1016/j.matt.2020.12.017

    Article  CAS  Google Scholar 

  5. Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L (2020) Ultrafast and broadband phptodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci Appl 9:31. https://doi.org/10.1038/s41377-020-0264-5

    Article  CAS  Google Scholar 

  6. Takiguchi M, Sasaki S, Tateno K, Chen E, Nozaki K, Sergent S, Kuramochi E, Zhang G, Shinya A, Notomi M (2020) Hybrid Nanowire Photodetector Integrated in a Silicon Photonic Crystal. ACS Photonics 7(12):3467–3473. https://doi.org/10.1021/acsphotonics.0c01356

    Article  CAS  Google Scholar 

  7. Meng N, Ren X, Zhu X, Wu J, Yang B, Gao F, Zhang H, Liao Y, Bilotti E, Reece MJ, Yan H (2020) Multiscale understanding of electric polarization in poly(vinyledene fluoride)-based ferroelectric polymer. J Mater Chem C 8:16436–16442. https://doi.org/10.1039/D0TC04310A

    Article  CAS  Google Scholar 

  8. Kadir ES, Gayen RN (2021) Graphene Oxide incorporated flexible and free-standing PVDF/ZnO composite membrane for mechanical energy harvesting. Sens Actuators, A 333:113305. https://doi.org/10.1016/j.sna.2021.113305

    Article  CAS  Google Scholar 

  9. Lu L, Ding W, Liu J, Yang B (2020) Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78:105251. https://doi.org/10.1016/j.nanoen.2020.105251

    Article  CAS  Google Scholar 

  10. Kadir ES, Gayen RN, Paul R, Biswas S (2020) Interfacial effects on ferroelectric and dielectric properties of GO reinforced free-standing and flexible PVDF/ZnO composite membranes: Bias dependent impedance spectroscopy. J Alloy Compd 843:155974. https://doi.org/10.1016/j.jallcom.2020.155974

    Article  CAS  Google Scholar 

  11. Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J Polym Res 20:43. https://doi.org/10.1007/s10965-012-0043-y

    Article  CAS  Google Scholar 

  12. Miao J, Zhang F (2018) Recent progress on photomultiplication type organic photodetectors. Mater Sci Laser Photonics Rev. https://doi.org/10.1002/LPOR.201800204

  13. Chao PCY, Someya T (2019) Organic photodetectors for next-generation wearable electronics. Adv Mater 32(15):1902045. https://doi.org/10.1002/adma.201902045

    Article  CAS  Google Scholar 

  14. Maity K, Pal U, Mishra HK, Maji P, Sadhukhan P, Mallick Z, Das S, Mondal B, Mandal D (2022) Piezo-phototronic effect in highly stable CsPbI3-PVDF composite for self-powered nanogenerator and photodetector. Nano Energy 92:106743. https://doi.org/10.1016/j.nanoen.2021.106743

    Article  CAS  Google Scholar 

  15. Ornelas CD, Bowmen A, Walmsley TS, Wang T, Andrews K, Zhou Z, Xu YQ (2020) Ultrafast Photocurrent Response and High Detectivity in Two-Dimensional MoSe2-based Heterojunction. ACS Appl Mater Interfaces 12(41):46476–46482. https://doi.org/10.1021/acsami.0c12155

    Article  CAS  Google Scholar 

  16. Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H (2018) Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun 9:3311. https://doi.org/10.1038/s41467-018-05874-2

    Article  CAS  Google Scholar 

  17. Paul R, Gayen RN, Biswas S, Bhat SV, Bhunia R (2016) Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RCS Adv 6:61661–61672. https://doi.org/10.1039/C6RA05039E

    Article  CAS  Google Scholar 

  18. Yao J, Yang G (2020) 2D material broadband photodetector. Nanoscale 12:454–476. https://doi.org/10.1039/C9NR09070C

    Article  CAS  Google Scholar 

  19. Kulia T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci. 35(11):1350–1375. https://www.aquila.usm.edu/fac-pubs/961

  20. Liu L, Zhang J, Zhao J, Liu F (2012) Mechanical properties of graphene oxides Nanoscale 4:5910–5916. https://doi.org/10.1039/C2NR31164J

    Article  CAS  Google Scholar 

  21. Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplates. 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 1–6. https://doi.org/10.1109/ITHERM.2012.6231405

  22. Hoo BM, Shin HJ, Yoon W, Park HB (2013) Graphene and graphene oxide and their use in barrier polymers. J Appl Polym Sci 131:1. https://doi.org/10.1002/app.39628

    Article  CAS  Google Scholar 

  23. Naumov AV (2016) Optical Properties of Graphene Oxide. Graphene Oxide: Fundamental Appl. https://doi.org/10.1002/9781119069447.ch5

    Article  Google Scholar 

  24. Han P, Fan J, Zhu L, Min C, Shen X, Pan T (2012) Structure, thermal stability and electrical properties of reduced graphene/poly(vinylidene fluoride) nanocomposite films. J Nanosci and Nanotechnol 12(9):7290–7295. https://doi.org/10.1166/jnn.2012.6584

    Article  CAS  Google Scholar 

  25. Chen M, Jiang J, Feng S, Low ZX, Zhong Z, Xing W (2021) Graphene oxide functionalized polyvinlidene fluoride nanofibrous membranes for efficient particulate matter removal. J Membr Sci 635:119463. https://doi.org/10.1016/j.memsci.2021.119463

    Article  CAS  Google Scholar 

  26. He L, Tjong SC (2013) A graphene oxide-polyvinylidene fluoride mixture as a precursor for fabricating thermally reduced graphene oxide-polyvinylidene fluoride composites. RCS Adv 3:22981–22987. https://doi.org/10.1039/C3RA45046E

    Article  CAS  Google Scholar 

  27. Elashmawi IS, Alatawi NF, Elsayed NH (2017) Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles. Results Phys 7:636–640. https://doi.org/10.1016/j.rinp.2017.01.022

    Article  Google Scholar 

  28. Jaleh B, Jabbari A (2014) Evalution of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347. https://doi.org/10.1016/j.apsusc.2014.09.030

    Article  CAS  Google Scholar 

  29. Khan MA, Kumar A, Zhang J, Kumar M (2021) Recent advances and propspects in reduced graphene oxide – based photodetectors. J Mater Chem C 9:8129–8157. https://doi.org/10.1039/D1TC01306H

    Article  CAS  Google Scholar 

  30. Yang T, Sun B, Nei L, Wei X, Guo T, Shi Z, Han F, Duan L (2018) The mechanism of photocurrent enhancement of ZnO ultraviolet photodetector by reduced graphene oxide. Curr Appl Phys 18(8):859–863. https://doi.org/10.1016/j.cap.2018.04.010

    Article  Google Scholar 

  31. Shen Y, Yang S, Zhou P, Sun Q, Wang P, Wan L, Li J, Chen L, Wang X, Ding S, Zhang DW (2013) Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 62:157. https://doi.org/10.1016/j.carbon.2013.06.007

    Article  CAS  Google Scholar 

  32. Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS (2016) Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. ACS Appl Mater Inter 8(1):521–529. https://doi.org/10.1021/acsami.5b09502

    Article  CAS  Google Scholar 

  33. Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HEP) polymer electrolyte membrane. Polymer 142:330–336. https://doi.org/10.1016/j.polymer.2018.03.052

  34. Zhang S, Wang H, Liu J, Bao C (2020) Measuring the specific surface area of monolayer graphene oxide in water. Mater Lett 261:127098. https://doi.org/10.1016/j.matlet.2019.127098

    Article  CAS  Google Scholar 

  35. Pendilino F, Armata N (2017) Graphene Oxide in Enviornmental Remediation Process. Springer International Publishing ISBN: 978–3–319–60429–9. https://doi.org/10.1007/978-3-319-60429-9

  36. Smith AT, Chance AML, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene of graphene oxide/ reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  37. Abdullah SI, Ansari MNM (2015) Mechanical properties of grapheneoxide(GO)/epoxy composites. HBRC J 11(2):151–156. https://doi.org/10.1016/j.hbrcj.2014.06.001

    Article  Google Scholar 

  38. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RCS Adv 7:15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  39. Castro EG, Rybarczyk MK, Muñoz RC, Morales-Jiménez M, Barragán-Huerta B, Lieder M (2021) Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity. Water 13:1279. https://doi.org/10.3390/w13091279

    Article  CAS  Google Scholar 

  40. Woo YC, Lee JJ, Tijing LD, Shon HK, Yao M, Kim HS (2015) Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination. Desalination 369:51–61. https://doi.org/10.1016/j.desal.2015.04.030

    Article  CAS  Google Scholar 

  41. Bormashenko Y, Pogreb R, Stanevsky O, Bormashenko E (2004) Vibrational spectrum of PVDF and its interpretation. Polym Test 23(7):791–796. https://doi.org/10.1016/j.polymertesting.2004.04.001

    Article  CAS  Google Scholar 

  42. Manoratne CH, Rosa SRD, Kottegoda IRM (2017) XRD-HTA, UV Visible, FTIR and SEM Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite. Mater Sci Res India 14(1):19–30. https://doi.org/10.13005/msri/140104

    Article  CAS  Google Scholar 

  43. Maharsi R, Arif AF, Ogi T, Widiyandariad H, Iskanda F (2019) Electrochemical properties of TiOx/rGO composite as an electrode for supercapacitors. RCS Adv 9:27896–27903. https://doi.org/10.1039/c9ra04346b

    Article  CAS  Google Scholar 

  44. Duan CG, Mei WN, Hardy JR, Ducharme S, Choi J, Dowben PA (2003) Comparison of the theoretical and experimental band structure of poly(vinylidene fluoride) crystal. Europhys Lett 61(1):81–87. https://doi.org/10.1209/epl/i2003-00248-2

    Article  CAS  Google Scholar 

  45. Zhong W, Liu Y, Yang X, Wang C, Xin W, Li Y, Liu W, Xu H (2021) Suspended few-layer GaS photodetector with sensitive fast response. Mater Des 212:110233. https://doi.org/10.1016/j.matdes.2021.110233

    Article  CAS  Google Scholar 

  46. Yang Y, Dai H, Zhang Y, Luo D, Zhang X, Wang K, Sun XW, Yao J (2019) All-Perovskite Photodetector with Fast Response. Nanoscale Res Lett 14:291. https://doi.org/10.1186/s11671-019-3082-z

    Article  CAS  Google Scholar 

  47. He L, Tjong SC (2013) Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res Lett 8:132. https://doi.org/10.1186/1556-276X-8-132

    Article  CAS  Google Scholar 

  48. Abzan N, Kharaziha M, Labbaf S (2019) Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Mater Des 167:107636. https://doi.org/10.1016/j.matdes.2019.107636

    Article  CAS  Google Scholar 

  49. Shuler S, Muench JE, Ruocco A, Balci O, Thourhout DV, Sorianello V, Romagnoli M, Watanabe K, Taniguchi T, Goyakhman I, Ferrari AC, Mueller T (2021) High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat Commun 12:3733. https://doi.org/10.1038/s41467-021-23436-x

    Article  CAS  Google Scholar 

  50. Ren H, Chen JD, Li YQ, Tang JX (2021) Recent Progress in Organic Photodetectors and their Applications. Adv Sci 8(1):2002418. https://doi.org/10.1002/advs.202002418

    Article  CAS  Google Scholar 

  51. Bayan S, Bhattacharaya D, Mitra RK, Ray SK (2020) Self-powered flexible photodetectors based on Ag nanoparticle loaded gC3N4nanosheets and PVDF hybrids: Role of plasmonic and piezoelectric effects. Nanotechnology 31(36):365401. https://doi.org/10.1088/1361-6528/ab9470

    Article  CAS  Google Scholar 

  52. Prabakaran K, Jandas PJ, Mohanty S, Nayak SK (2018) Synthesis, characterization of reduced graphene oxide nanosheets and its reinforcement effect on polymer electrolyte for dye sensitized solar cell applications. Sol Energy 170:442. https://doi.org/10.1016/j.solener.2018.05.008

    Article  CAS  Google Scholar 

  53. Prabakaran K, Palai AK, Mohanty S, Nayak SK (2015) Aligned Carbon Nanotube/Polymer Hybrid Electrolytes for High Performance Dye Sensitized Solar Cell Applications. RCS Adv 5:66563. https://doi.org/10.1039/C5RA10843H

    Article  CAS  Google Scholar 

  54. Sa C, Xu X, Wu X, Chen J, Zuo C, Fang X (2019) A wearable helical organic–inorganic photodetector with thermoelectric generators as the power source. J Mater Chem C 7:13097. https://doi.org/10.1039/C9TC04696H

    Article  CAS  Google Scholar 

  55. Shen TL, Chu YW, Liao YK, Lee WY, Kuo HC, Lin TY, Chen YF (2020) Ultrahigh-performance self-powered flexible photodetector driven from photogating, piezo-phototronic, and ferroelectric effects. Adv Opt Mater 8:1901334. https://doi.org/10.1002/adom.201901334

    Article  CAS  Google Scholar 

  56. Zhang X, Wang S, Qiu J, Du W, He X, Gao M, Li X, Ma X, Li G (2018) Dispersion of graphene oxide in polyvinylidene difluoride and its improvement of photoresponse properties of nanocomposite. Adv Func Mat. https://doi.org/10.1007/978-981-13-0110-0_88

    Article  Google Scholar 

  57. Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–124. https://doi.org/10.1103/PhysRev.83.121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ESK wishes to thank Council of Scientific & Industrial Research, Government of India for providing research fellowship (File no. 08/ 155(0070)/2019-EMR-I. RNG wishes to thank Department of Higher Education, Science & Technology and Biotechnology, Government of West Bengal (File no. – ST/P/S&T/4G-3/2017) for financial support to carry out this work. We are also thankful to central instrumentation laboratory and Departemnt of Chemistry, University of Kalyani for their kind help in SEM and FTIR measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Gayen.

Ethics declarations

Competing interests

There are no such interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadir, E.S., Gayen, R.N. & Chowdhury, M.P. Enhanced photodetection properties of GO incorporated flexible PVDF membranes under solar spectrum. J Polym Res 29, 529 (2022). https://doi.org/10.1007/s10965-022-03364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03364-0

Keywords

Navigation