Skip to main content

Advertisement

Log in

3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review

  • Review Article
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The skin is responsible for several necessary physiological activities and plays a prominent role in wound healing. Advanced wound healing requires the use of skin tissue engineering. It was developed primarily to address the difficulties associated with using traditional wound dressings when scars become inflamed or infected. In this way, 3D printing is a unique technology that has attracted an excellent deal of attention within the health profession. This technology improves the ability to combine various medications and proteins with the engineered microstructures of printed products. The advent of 3D printing offers exciting new possibilities for traditional wound dressings to heal broken skin with this new technique. Reconstruction of the skin can be attempted with a specially designed hydrogel with loaded drugs for advanced wound healing. Therefore, this technology can cause a dramatic reduction in the risk of infection and inflammation in wounds. This study comprehensively reviews the latest achievements in polymer 3D printing for wound dressings and skin tissue engineering. Commercially available 3D printing technologies are also explained and these technologies were compared for the wound dressing fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S (2017) Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm 527(1–2):161–170

    Article  PubMed  CAS  Google Scholar 

  2. Wang W, Lu K-j, Yu C-h, Huang Q-l, Du Y-Z (2019) Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology 17(1):1–15

    Article  Google Scholar 

  3. Ahlawat J, Kumar V, Gopinath P (2019) Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing. Mater Sci Eng C 103:109834

    Article  CAS  Google Scholar 

  4. Koehler J, Brandl FP, Goepferich AM (2018) Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polymer J 100:1–11

    Article  CAS  Google Scholar 

  5. Milne KE, Penn-Barwell JG (2020) Classification and management of acute wounds and open fractures. Surg Infect (Larchmt) 38(3):143–149

    Google Scholar 

  6. Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI (2020) Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci

  7. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  PubMed  CAS  Google Scholar 

  8. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  PubMed  CAS  Google Scholar 

  9. Moeini A, Pedram P, Makvandi P, Malinconico M, d’Ayala GG (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym 233(115839)

  10. Miguel SP, Moreira AF, Correia IJ (2019) Chitosan based-asymmetric membranes for wound healing: A review. Int J Biol Macromol 127:460–475

    Article  PubMed  CAS  Google Scholar 

  11. Hemmatgir F, Koupaei N, Poorazizi E (2021) Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing. Burns

  12. Jones A, Vaughan D (2005) Hydrogel dressings in the management of a variety of wound types: A review. J Orthop Nurs 9:S1–S11

    Article  Google Scholar 

  13. Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A (2019) A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 104:109873

  14. Salmanian G, Hassanzadeh-Tabrizi S, Koupaei N (2021) Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: A review. Int J Biol Macromol

  15. Sultan S, Siqueira G, Zimmermann T, Mathew AP (2017) 3D printing of nano-cellulosic biomaterials for medical applications. Curr Opin Biomed Eng 2:29–34

    Article  Google Scholar 

  16. Xu C, Dai G, Hong Y (2019) Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater 95:50–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Khoshnood N, Zamanian A (2020) Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting:e00095

  18. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev 63(4–5):352–366

    Article  PubMed  CAS  Google Scholar 

  19. Kamel RA, Ong JF, Eriksson E, Junker JP, Caterson EJ (2013) Tissue engineering of skin. J Am Coll Surg 217(3):533–555

    Article  PubMed  Google Scholar 

  20. Raz-Pasteur A, Fishel R, Hardak E, Mashiach T, Ullmann Y, Egozi D (2016) Do wound cultures give information about the microbiology of blood cultures in severe burn patients? Ann Plast Surg 76(1):34–39

    Article  PubMed  CAS  Google Scholar 

  21. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Homaeigohar S, Boccaccini AR (2020) Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 107:25–49

    Article  PubMed  CAS  Google Scholar 

  23. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 127:130–141

    Article  PubMed  Google Scholar 

  24. Jin Y-a, Li H, He Y, Fu J-z (2015) Quantitative analysis of surface profile in fused deposition modelling. Addit Manuf 8:142–148

    Google Scholar 

  25. Dhivya S, Padma VV, Santhini E (2015) Wound dressings–a review. BioMedicine 5(4)

  26. Gao M, Sun L, Wang Z, Zhao Y (2013) Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater Sci Eng, C 33(1):397–404

    Article  CAS  Google Scholar 

  27. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Letters 7(3):219–242

    Article  PubMed  CAS  Google Scholar 

  28. Zimbone M, Buccheri M, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi M (2015) Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl Catal B 165:487–494

    Article  CAS  Google Scholar 

  29. Saebnoori E, Koupaei N, Hassanzadeh-Tabrizi S (2021) The solution plasma synthesis, characterisation, and antibacterial activities of dispersed CuO nanoparticles. Mater Tech 1–10

  30. Rahimi M, Hassanzadeh-Tabrizi S, Aminsharei F (2021) Fabrication and antibacterial properties of TFC membrane modified with cellulose/copper oxide nanoparticles for removal of cadmium from water. Sep Sci Technol 1–13

  31. Sriramulu M, Shukla D, Sumathi S (2018) Aegle marmelos leaves extract mediated synthesis of zinc ferrite: antibacterial activity and drug delivery. Mater Res Express 5(11):115404

    Article  Google Scholar 

  32. Udhaya PA, Bessy T, Meena M (2019) Antibacterial activity of nickel and magnesium substituted ferrite nanoparticles synthesized via self-combustion method. Materials Today: Proceedings 8:169–175

    CAS  Google Scholar 

  33. Talaei M, Hassanzadeh-Tabrizi S, Saffar-Teluri A (2021) Synthesis of mesoporous CuFe2O4@ SiO2 core-shell nanocomposite for simultaneous drug release and hyperthermia applications. Ceram Int 47(21):30287–30297

    Article  CAS  Google Scholar 

  34. Hassanzadeh-Tabrizi S, Norbakhsh H, Pournajaf R, Tayebi M (2021) Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceram Int 47(13):18167–18176

    Article  CAS  Google Scholar 

  35. Bigham A, Aghajanian AH, Allahdaneh S, Hassanzadeh-Tabrizi S (2019) Multifunctional mesoporous magnetic Mg2SiO4–CuFe2O4 core-shell nanocomposite for simultaneous bone cancer therapy and regeneration. Ceram Int 45(15):19481–19488

    Article  CAS  Google Scholar 

  36. Bhaduri B, Engel M, Polubesova T, Wu W, Xing B, Chefetz B (2018) Dual functionality of an Ag-Fe3O4-carbon nanotube composite material: Catalytic reduction and antibacterial activity. J Environ Chem Eng 6(4):4103–4113

    Article  CAS  Google Scholar 

  37. Hassanzadeh-Tabrizi S, Behbahanian S, Amighian J (2016) Synthesis and magnetic properties of NiFe2− xSmxO4 nanopowder. J Magn Magn Mater 410:242–247

    Article  CAS  Google Scholar 

  38. Hassanzadeh-Tabrizi SA (2019) Mg0. 5Ni0. 5Fe2O4 nanoparticles as heating agents for hyperthermia treatment. J Am Ceram Soc 102(5):2752–2760

    CAS  Google Scholar 

  39. Ansari M, Bigham A, Hassanzadeh Tabrizi SA, Abbastabar Ahangar H (2018) Copper-substituted spinel Zn-Mg ferrite nanoparticles as potential heating agents for hyperthermia. J Am Ceram Soc 101(8):3649–3661

    Article  CAS  Google Scholar 

  40. Jadhav S, Kim B, Lee H, Im I, Rokade A, Park S, Patil M, Kim G, Yu Y, Lee S (2018) Induction heating and in vitro cytotoxicity studies of MnZnFe2O4 nanoparticles for self-controlled magnetic particle hyperthermia. J Alloy Compd 745:282–291

    Article  CAS  Google Scholar 

  41. Beji Z, Hanini A, Smiri L, Gavard J, Kacem K, Villain F, Greneche J-M, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem Mater 22(19):5420–5429

    Article  CAS  Google Scholar 

  42. Nasiri M, Tabrizi SAH, Almaki JH, Nasiri R, Idris A, Dabagh S (2016) Synthesis, functionalization, characterization, and in vitro evaluation of robust pH-sensitive CFNs–PA–CaCO 3. RSC Adv 6(87):84217–84230

    Article  CAS  Google Scholar 

  43. Elsner JJ, Zilberman M (2009) Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties. Acta Biomater 5(8):2872–2883

    Article  PubMed  CAS  Google Scholar 

  44. Pachuau L (2015) Recent developments in novel drug delivery systems for wound healing. Expert Opin Drug Deliv 12(12):1895–1909

    Article  PubMed  CAS  Google Scholar 

  45. Tamahkar E, Özkahraman B, Süloğlu AK, İdil N, Perçin I (2020) A novel multilayer hydrogel wound dressing for antibiotic release. J Drug Deliv Sci Technol 58:101536

    Article  CAS  Google Scholar 

  46. Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mota RCdAG, da Silva EO, de Lima FF, de Menezes LR, Thiele ACS (2016) 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Mater Sci Appl 7(8):430–452

    Google Scholar 

  48. Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56:3–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wu G-H, Hsu S-h (2015) polymeric-based 3D printing for tissue engineering. J Med Biol Eng 35(3):285–292

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Yan C (2018) 3D printing of scaffolds for tissue engineering. by Cvetković D. Intech Open, UK 7:137–154

    Google Scholar 

  51. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: A review and prospective. Compos B Eng 110:442–458

    Article  CAS  Google Scholar 

  52. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3(3):278–314

    Article  PubMed  Google Scholar 

  53. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  PubMed  CAS  Google Scholar 

  54. Solomon IJ, Sevvel P, Gunasekaran J (2021) A review on the various processing parameters in FDM. Mater Today Proc 37:509–514

    CAS  Google Scholar 

  55. Peng W, Bin Z, Shouling D, Lei L, Huang C (2020) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J Aeronaut

  56. Yang C, Tian X, Li D, Cao Y, Zhao F, Shi C (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol 248:1–7

    Article  Google Scholar 

  57. Wang P, Zou B, Xiao H, Ding S, Huang C (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol 271:62–74

    Article  CAS  Google Scholar 

  58. Rodríguez-Panes A, Claver J, Camacho AM (2018) The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials 11(8):1333

    Article  PubMed Central  Google Scholar 

  59. Shanmugam V, Das O, Babu K, Marimuthu U, Veerasimman A, Johnson DJ, Neisiany RE, Hedenqvist MS, Ramakrishna S, Berto F (2021) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007

    Article  CAS  Google Scholar 

  60. Koupaei N, Karkhaneh A (2016) Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering. J Tissue Eng Regen Med 13(3):251–260

    Article  CAS  Google Scholar 

  61. Koupaei N, Karkhaneh A, Daliri Joupari M (2015) Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res, Part A 103(12):3919–3926

    Article  CAS  Google Scholar 

  62. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  PubMed  CAS  Google Scholar 

  63. Devi MG, Amutheesan M, Govindhan R, Karthikeyan B (2018) A review of three-dimensional printing for biomedical and tissue engineering applications. Open Biotechnol J 12(1)

  64. Rastogi P, Kandasubramanian B (2019) Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem Eng J 366:264–304

    Article  CAS  Google Scholar 

  65. Elomaa L, Pan C-C, Shanjani Y, Malkovskiy A, Seppälä JV, Yang Y (2015) Three-dimensional fabrication of cell-laden biodegradable poly (ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. J Mater Chem B 3(42):8348–8358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P (2020) A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed Eng 40(2):624–638

    Article  Google Scholar 

  67. Farzan A, Borandeh S, Ezazi NZ, Lipponen S, Santos HA, Seppälä J (2020) 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. Eur Polym J 139:109988

    CAS  Google Scholar 

  68. Provaggi E, Kalaskar DM (2017) 3D printing families: Laser, powder, nozzle based techniques. 3D Printing in Medicine. Elsevier, pp 21–42

  69. Irvine SA, Agrawal A, Lee BH, Chua HY, Low KY, Lau BC, Machluf M, Venkatraman S (2015) Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevice 17(1):1–8

    Article  CAS  Google Scholar 

  70. Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175

    Article  PubMed  CAS  Google Scholar 

  71. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym 236:116025

    PubMed  CAS  Google Scholar 

  72. Abasalizadeh F, Moghaddam SV, Alizadeh E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14(1):1–22

    Google Scholar 

  73. Chinga-Carrasco G, Ehman NV, Filgueira D, Johansson J, Vallejos ME, Felissia FE, Håkansson J, Area MC (2019) Bagasse—A major agro-industrial residue as potential resource for nanocellulose inks for 3D printing of wound dressing devices. Addit Manuf 28:267–274

    CAS  Google Scholar 

  74. Straccia MC, d’Ayala GG, Romano I, Laurienzo P (2015) Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity. Carbohyd Polym 125:103–112

    Article  CAS  Google Scholar 

  75. Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K, Park J-K, Yoo S-S (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  PubMed  CAS  Google Scholar 

  76. Binder KW, Allen AJ, Yoo JJ, Atala A (2011) Drop-on-demand inkjet bioprinting: a primer. Gene Ther Regul 6(01):33–49

    Article  CAS  Google Scholar 

  77. Chouhan D, Mandal BB (2020) Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater 103:24–51

    Article  PubMed  CAS  Google Scholar 

  78. Chen C-S, Zeng F, Xiao X, Wang Z, Li X-L, Tan R-W, Liu W-Q, Zhang Y-S, She Z-D, Li S-J (2018) Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds. ACS Appl Mater Interfaces 10(40):33879–33890

    Article  PubMed  CAS  Google Scholar 

  79. Dal Pra I, Chiarini A, Boschi A, Freddi G, Armato U (2006) Novel dermo-epidermal equivalents on silk fibroin-based formic acid-crosslinked three-dimensional nonwoven devices with prospective applications in human tissue engineering/regeneration/repair. Int J Mol Med 18(2):241–247

    Google Scholar 

  80. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S (2016) 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 234:41–48

    Article  PubMed  CAS  Google Scholar 

  81. Meaume S, Teot L, Lazareth I, Martini J, Bohbot S (2004) The importance of pain reduction through dressing selection in routine wound management: the MAPP study. J Wound Care 13(10):409–413

    Article  PubMed  CAS  Google Scholar 

  82. Streifel BC, Lundin JG, Sanders AM, Gold KA, Wilems TS, Williams SJ, Cosgriff-Hernandez E, Wynne JH (2018) Hemostatic and absorbent PolyHIPE–kaolin composites for 3D printable wound dressing materials. Macromol Biosci 18(5):1700414

    Article  Google Scholar 

  83. Ilhan E, Cesur S, Guler E, Topal F, Albayrak D, Guncu MM, Cam ME, Taskin T, Sasmazel HT, Aksu B (2020) Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int J Biol Macromol 161:1040–1054

    Article  PubMed  CAS  Google Scholar 

  84. Salehi-Abari M, Koupaei N, Hassanzadeh-Tabrizi S (2020) Synthesis and Characterisation of semi-interpenetrating network of Polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing. Mater Technol 35(5):290–299

    Article  CAS  Google Scholar 

  85. Wang S, Xiong Y, Chen J, Ghanem A, Wang Y, Yang J, Sun B (2019) Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol 7:348

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kim BS, Ahn M, Cho W-W, Gao G, Jang J, Cho D-W (2021) Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials 272:120776

    Article  PubMed  CAS  Google Scholar 

  87. Kim BS, Kwon YW, Kong J-S, Park GT, Gao G, Han W, Kim M-B, Lee H, Kim JH, Cho D-W (2018) 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 168:38–53

    Article  PubMed  CAS  Google Scholar 

  88. Zhang J, Yun S, Karami A, Jing B, Zannettino A, Du Y, Zhang H (2020) 3D printing of a thermosensitive hydrogel for skin tissue engineering: A proof of concept study. Bioprinting 19:e00089

    Article  Google Scholar 

  89. Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH (2019) Additive manufacturing: Challenges, trends, and applications. Adv Mech Eng 11(2):1687814018822880

    Article  Google Scholar 

  90. Sheoran AJ, Kumar H (2020) Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Mater Today Proc 21:1659–1672

    Google Scholar 

  91. Dey A, Yodo N (2019) A systematic survey of FDM process parameter optimization and their influence on part characteristics. J Manuf Mater Process 3(3):64

    CAS  Google Scholar 

  92. Yuan L, Ding S, Wen C (2019) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact Mater 4:56–70

    PubMed  Google Scholar 

  93. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  PubMed  CAS  Google Scholar 

  94. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim C-H (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(1):1–8

    Google Scholar 

  95. Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Compu 51(3):245–256

    Article  Google Scholar 

  96. Landers R, Pfister A, Hübner U, John H, Schmelzeisen R, Mülhaupt R (2002) Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 37(15):3107–3116

    Article  CAS  Google Scholar 

  97. Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 53(4):414–420

    Article  CAS  Google Scholar 

  98. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. CIRP Ann 56(1):205–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narjes Koupaei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radmanesh, S., Shabangiz, S., Koupaei, N. et al. 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. J Polym Res 29, 50 (2022). https://doi.org/10.1007/s10965-022-02899-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02899-6

Keywords

Navigation