Skip to main content
Log in

New thermally stable nanocomposites reinforced silicate nanoparticles containing phosphine oxide moiety based on poly(amide-imide): synthesis, characterization and flame retardancy study

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New type of nanocomposite materials were produced using a poly(amide-imide) (PAI) matrix and novel organoclay as a reinforcing agent by solution intercalation technique in N-methyl-2-pyrrolidone (NMP). The organoclay was prepared from Cloisite Na+ and protonated form of bis(3-amino phenyl)phenyl phosphine oxide via ion-exchange reaction. It was confirmed by Fourier transform infrared spectroscopy and X-ray powder diffraction techniques. A new PAI containing phenylacetic acid moiety was synthesized by direct polycondensation reaction of 2,2′-(5,5′-oxybis(1,3-dioxoisoindoline-5,2-diyl))bis(2-phenylacetic acid) as a new diacid and 4,4′-diaminodiphenylsulfone. Poly(amide-imide)/nanocomposites (PAIN)s containing 4 and 8 % of new organoclay were prepared via solution intercalation method through blending of organoclay with the PAI solution. The nanostructures and properties of the PAINs were investigated using different techniques. Transmission electron microscopy and XRD results revealed the good dispersion nano silicate layers in the polymer matrix. Thermal properties and flame retardancy of the resulting PAINs were investigated by thermal gravimetry analyses and microscale combustion calorimetry techniques. Organoclay shows a good effect on improving the flame retardancy of the PAI, reflecting the decrease in heat release rate (HRR) from 250 W/g for PAI to 185 and 157 W/g for PAINs, while the thermal stability of the PAI nanocomposites only increased slightly compared to the neat polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lakshmi MS, Narmadha B, Reddy BSR (2008) Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym Degrad Stab 93(1):201–213. doi:10.1016/j.polymdegradstab.2007.10.005

    Article  CAS  Google Scholar 

  2. Yang L, Hu Y, Lu H, Song L (2006) Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites. J Appl Polym Sci 99(6):3275–3280. doi:10.1002/app.22756

    Article  CAS  Google Scholar 

  3. Zhu J, Start P, Mauritz KA, Wilkie CA (2002) Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym Degrad Stab 77(2):253–258. doi:10.1016/S0141-3910(02)00056-3

    Article  CAS  Google Scholar 

  4. Sahoo PK, Samal R (2007) Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite. Polym Degrad Stab 92(9):1700–1707. doi:10.1016/j.polymdegradstab.2007.06.003

    Article  CAS  Google Scholar 

  5. Liu X-Q, Wang D-Y, Wang X-L, Chen L, Wang Y-Z (2011) Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polym Degrad Stab 96(5):771–777. doi:10.1016/j.polymdegradstab.2011.02.022

    Article  CAS  Google Scholar 

  6. Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Ann Rev Chem Biomol Eng 1(1):37–58. doi:10.1146/annurev-chembioeng-073009-100856

    Article  CAS  Google Scholar 

  7. Hashemifard SA, Ismail AF, Matsuura T (2011) Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chem Eng J 170(1):316–325. doi:10.1016/j.cej.2011.03.063

    Article  CAS  Google Scholar 

  8. Badshah S, Airoldi C (2011) Layered organoclay with talc-like structure as agent for thermodynamics of cations sorption at the solid/liquid interface. Chem Eng J 166(1):420–427. doi:10.1016/j.cej.2010.10.078

    Article  CAS  Google Scholar 

  9. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 35(7):902–958. doi:10.1016/j.progpolymsci.2010.03.001

    Article  CAS  Google Scholar 

  10. Ramani A, Hagen M, Hereid J, Zhang J, Bakirtzis D, Delichatsios M (2009) Interaction of a phosphorus-based FR, a nanoclay and PA6—Part 1: interaction of FR and nanoclay. Fire Mater 33(6):273–285. doi:10.1002/fam.1004

    Article  CAS  Google Scholar 

  11. Pack S, Si M, Koo J, Sokolov JC, Koga T, Kashiwagi T, Rafailovich MH (2009) Mode-of-action of self-extinguishing polymer blends containing organoclays. Polym Degrad Stab 94(3):306–326. doi:10.1016/j.polymdegradstab.2008.12.008

    Article  CAS  Google Scholar 

  12. Song L, Hu Y, Lin Z, Xuan S, Wang S, Chen Z, Fan W (2004) Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite. Polym Degrad Stab 86(3):535–540. doi:10.1016/j.polymdegradstab.2004.06.007

    Article  CAS  Google Scholar 

  13. Gilman JW, Harris RH, Shields JR, Kashiwagi T, Morgan AB (2006) A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char. Polym Adv Technol 17(4):263–271. doi:10.1002/pat.682

    Article  CAS  Google Scholar 

  14. Hu Y, Tang Y, Song L (2006) Poly(propylene)/clay nanocomposites and their application in flame retardancy. Polym Adv Technol 17(4):235–245. doi:10.1002/pat.683

    Article  CAS  Google Scholar 

  15. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14(11):4654–4661. doi:10.1021/cm020391b

    Article  CAS  Google Scholar 

  16. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) One-pot synthesis of nylon 6–clay hybrid. J Polymer Sci, Part A: Polymer Chem 31(7):1755–1758. doi:10.1002/pola.1993.080310714

    Article  CAS  Google Scholar 

  17. Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6(7):1017–1022. doi:10.1021/cm00043a025

    Article  CAS  Google Scholar 

  18. Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990. doi:10.1021/cm010305s

    Article  CAS  Google Scholar 

  19. Li Y, Ishida H (2005) A study of morphology and intercalation kinetics of polystyrene − organoclay nanocomposites. Macromolecules 38(15):6513–6519. doi:10.1021/ma0507084

    Article  CAS  Google Scholar 

  20. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Fire properties of polystyrene − clay nanocomposites. Chem Mater 13(10):3774–3780. doi:10.1021/cm000984r

    Article  CAS  Google Scholar 

  21. Hartwig A, Pütz D, Schartel B, Bartholmai M, Wendschuh-Josties M (2003) Combustion behaviour of epoxide based nanocomposites with ammonium and phosphonium bentonites. Macromol Chem Phys 204(18):2247–2257. doi:10.1002/macp.200300047

    Article  CAS  Google Scholar 

  22. Hrobarikova J, Robert JL, Calberg C, Jérôme R, Grandjean J (2004) Solid-state NMR study of intercalated species in poly(ε-caprolactone)/clay nanocomposites. Langmuir 20(22):9828–9833. doi:10.1021/la048705s

    Article  CAS  Google Scholar 

  23. Singla P, Mehta R, Upadhyay SN (2012) Clay modification by the use of organic cations. Green Sustain Chem 2(1):21–25. doi:10.4236/gsc.2012.21004

    Article  CAS  Google Scholar 

  24. Ghosh MK, Mittal KL (1996) Polyimides: Fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  25. Liaw D-J, Liaw B-Y (2001) Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer 42(2):839–845. doi:10.1016/S0032-3861(00)00379-7

    Article  CAS  Google Scholar 

  26. Zhang Q, Li S, Li W, Zhang S (2007) Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride and various aromatic diamines. Polymer 48(21):6246–6253. doi:10.1016/j.polymer.2007.08.047

    Article  CAS  Google Scholar 

  27. Zhang Q, Chen G, Zhang S (2007) Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit. Polymer 48(8):2250–2256. doi:10.1016/j.polymer.2007.02.061

    Article  CAS  Google Scholar 

  28. Jeong H-J, Kakimoto M-A, Imai Y (1991) Synthesis and characterization of novel aromatic polyamides from 3,4-bis(4-aminophenyl)-2,5-diphenylpyrrole and aromatic diacid chlorides. J Polymer Sci, Part A: Polymer Chem 29(5):767–772. doi:10.1002/pola.1991.080290519

    Article  CAS  Google Scholar 

  29. Ghosal K, Freeman BD, Chern RT, Alvarez JC, de la Campa JG, Lozano AE, de Abajo J (1995) Gas separation properties of aromatic polyamides with sulfone groups. Polymer 36(4):793–800. doi:10.1016/0032-3861(95)93110-8

    Article  CAS  Google Scholar 

  30. Hajibeygi M, Shabanian M, Khodaei-Tehrani M (2011) Synthesis and characterization of new organosoluble poly(amide-imide)s with good thermal properties containing photosensitive and bicyclo segments in the main chain. Designed Monomers Polymers 14(6):617–633. doi:10.1163/156855511x601619

    CAS  Google Scholar 

  31. Hajibeygi M, Shabanian M (2012) Preparation and characterization of new organosoluble polyamides with good thermal properties containing photosensitive group in the main chain. J Appl Polym Sci 126(1):280–288. doi:10.1002/app.36872

    Article  CAS  Google Scholar 

  32. Mallakpour S, Kolahdoozan M (2007) Preparation of new poly(amide–imide)s with chiral architectures via direct polyamidation reaction. J Appl Polym Sci 104(2):1248–1254. doi:10.1002/app.25747

    Article  CAS  Google Scholar 

  33. Hajibeygi M, Faghihi K, Shabanian M (2011) Synthesis and characterization of novel heat resistance poly(amide-imide)s from N, N′-[2,5-bis(4-aminobenzylidene) cyclopentanone] bistrimellitimide acid and various aromatic diamines. J Appl Polym Sci 121(5):2877–2885. doi:10.1002/app.33897

    Article  CAS  Google Scholar 

  34. Hajibeygi M, Faghihi K, Shabanian M (2011) Preparation and characterization of new photosensitive and optically active poly(amide-imide)s from N-trimellitylimido-L-amino acid and dibenzalacetone moiety in the main chain. Polym Sci Ser B 53(9–10):518–527. doi:10.1134/s1560090411090016

    Article  CAS  Google Scholar 

  35. Faghihi K, Zamani K (2006) Synthesis and properties of novel flame-retardant poly(amide-imide)s containing phosphine oxide moieties in main chain by microwave irradiation. J Appl Polym Sci 101(6):4263–4269. doi:10.1002/app.23580

    Article  CAS  Google Scholar 

  36. Faghihi K (2006) Synthesis and characterization of new flame-retardant poly(amide-imide)s containing phosphine oxide and hydantoin moieties in the main chain. J Appl Polym Sci 102(5):5062–5071. doi:10.1002/app.24667

    Article  CAS  Google Scholar 

  37. Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY (2009) Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer 50(15):3478–3487. doi:10.1016/j.polymer.2009.06.013

    Article  CAS  Google Scholar 

  38. Yamazaki N, Matsumoto M, Higashi F (1975) Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci: Polym Chem Ed 13(6):1373–1380. doi:10.1002/pol.1975.170130609

    Article  CAS  Google Scholar 

  39. Morgan AB, Gilman JW (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329–1338. doi:10.1002/app.11884

    Article  CAS  Google Scholar 

  40. Lin CC, Chang KH, Lin KC, Su WF (2009) In situ probe nanophase transition in nanocomposite using thermal AFM. Compos Sci Technol 69(7):1180–1186. doi:10.1016/j.compscitech.2009.02.017

    Article  CAS  Google Scholar 

  41. Lin CC, Hsu SH, Chang YL, Su WF (2010) Transparent hydrophobic durable low moisture permeation poly(fluoroimide acrylate)/SiO2 nanocomposite from solventless photocurable resin system. J Mat Chem 20(15):3084–3091. doi:10.1039/b924726b

    Article  CAS  Google Scholar 

  42. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH (2000) Flammability properties of polymer—layered-silicate nanocomposites. polypropylene and polystyrene nanocomposites†. Chem Mater 12(7):1866–1873. doi:10.1021/cm0001760

    Article  CAS  Google Scholar 

  43. Zulfiqar S, Ahmad Z, Ishaq M, Sarwar MI (2009) Aromatic–aliphatic polyamide/montmorillonite clay nanocomposite materials: synthesis, nanostructure and properties. Mater Sci Eng, A 525(1–2):30–36. doi:10.1016/j.msea.2009.07.053

    Google Scholar 

  44. Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, their estimation and correlation with chemical structure. Elsevier Scientific Pub. Co., Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hajibeygi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajibeygi, M., Shabanian, M. & Madani, M. New thermally stable nanocomposites reinforced silicate nanoparticles containing phosphine oxide moiety based on poly(amide-imide): synthesis, characterization and flame retardancy study. J Polym Res 20, 250 (2013). https://doi.org/10.1007/s10965-013-0250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0250-1

Keywords

Navigation