Skip to main content
Log in

A Large Deviation Principle for the Stochastic Heat Equation with General Rough Noise

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the Freidlin–Wentzell large deviation principle for the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise:

$$\begin{aligned} \frac{\partial u^{{\varepsilon }}(t,x)}{\partial t}=\frac{\partial ^2 u^{{\varepsilon }}(t,x)}{\partial x^2}+\sqrt{{\varepsilon }}\sigma (t, x, u^{{\varepsilon }}(t,x))\dot{W}(t,x),\quad t> 0,\, x\in \mathbb {R}, \end{aligned}$$

where \(\dot{W}\) is white in time and fractional in space with Hurst parameter \(H\in \left( \frac{1}{4},\frac{1}{2}\right) \). Recently, Hu and Wang (Ann Inst Henri Poincaré Probab Stat 58(1):379–423, 2022) have studied the well-posedness of this equation without the technical condition of \(\sigma (0)=0\) which was previously assumed in Hu et al. (Ann Probab 45(6):4561–4616, 2017). We adopt a new sufficient condition proposed by Matoussi et al. (Appl Math Optim 83(2):849–879, 2021) for the weak convergence criterion of the large deviation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Balan, R., Jolis, M., Quer-Sardanyons, L.: SPDEs with affine multiplicative fractional noise in space with index \(\frac{1}{4}< H<\frac{1}{2} \). Electron. J. Probab. 2(54), 1–36 (2015)

    Google Scholar 

  2. Balan, R., Jolis, M., Quer-Sardanyons, L.: SPDEs with rough noise in space: Hölder continuity of the solution. Stat. Probab. Lett. 119, 310–316 (2016)

    Article  Google Scholar 

  3. Budhiraja, A., Chen, J., Dupuis, P.: Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stoch. Process. Appl. 123(2), 523–560 (2013)

    Article  MathSciNet  Google Scholar 

  4. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Statist. 20(1), 39–61 (2000)

    MathSciNet  Google Scholar 

  5. Budhiraja, A., Dupuis, P.: Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods. Springer, New York (2019)

    Book  Google Scholar 

  6. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36(4), 1390–1420 (2008)

    Article  MathSciNet  Google Scholar 

  7. Budhiraja, A., Dupuis, P., Maroulas, V.: Variational representations for continuous time processes. Ann. Inst. Henri Poincaré Probab. Stat. 47(3), 725–747 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press Inc, San Diego (2001)

    Google Scholar 

  9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Dai, Y., Li, R.: Transportation inequality for stochastic heat equation with rough dependence in space. Acta Math. Sin (Engl. Ser.) 38(11), 2019–2038 (2022)

  11. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous spde’s. Electron. J. Probab. 4(6), 1–29 (1999)

    MathSciNet  Google Scholar 

  12. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for spde’s: a comparison. Expo. Math. 29(1), 67–109 (2011)

    Article  MathSciNet  Google Scholar 

  13. Dong, Z., Wu, J., Zhang, R., Zhang, T.: Large deviation principles for first-order scalar conservation laws with stochastic forcing. Ann. Appl. Probab. 30(1), 324–367 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dupuis, P., Ellis, R.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  Google Scholar 

  15. Henry, D.: Geometric theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer-Verlag, Berlin, New York (1981)

    Book  Google Scholar 

  16. Hong, W., Hu S., Liu, W.: McKean-Vlasov SDEs and SPDEs with locally monotone coefficients. arXiv:2205.04043, (2022)

  17. Hong, W., Li, S., Liu, W.: Large deviation principle for McKean–Vlasov quasilinear stochastic evolution equation. Appl. Math. Optim. 84, S1119–S1147 (2021)

    Article  MathSciNet  Google Scholar 

  18. Hu, Y.: Some recent progress on stochastic heat equations. Acta Math. Sci. Ser. B (Engl. Ed.) 39(3), 874–914 (2019)

    MathSciNet  Google Scholar 

  19. Hu, Y., Huang, J., Lê, K., Nualart, D., Tindel, S.: Stochastic heat equation with rough dependence in space. Ann. Probab. 45(6), 4561–4616 (2017)

  20. Hu, Y., Huang, J., Lê, K., Nualart, D., Tindel, S.: Parabolic Anderson model with rough dependence in space. Computation and combinatorics in dynamics, stochastics and control, 477-498. Abel Symp., 13, Springer, Cham (2018)

  21. Hu, Y., Nualart, D., Zhang, T.: Large deviations for stochastic heat equation with rough dependence in space. Bernoulli 24(1), 354–385 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hu, Y., Wang, X.: Stochastic heat equation with general rough noise. Ann. Inst. Henri Poincaré Probab. Stat. 58(1), 379–423 (2022)

    Article  MathSciNet  Google Scholar 

  23. Liu, J.: Moderate deviations for stochastic heat equation with rough dependence in space. Acta Math. Sin. (Engl. Ser.) 35(9), 1491–1510 (2019)

    Article  MathSciNet  Google Scholar 

  24. Liu, S., Hu, Y., Wang, X.: Nonlinear stochastic wave equation driven by rough noise. J. Differ. Equ. 331, 99–161 (2022)

  25. Liu, W.: Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61(1), 27–56 (2010)

    Article  MathSciNet  Google Scholar 

  26. Liu, W., Song, Y., Zhai, J., Zhang, T.: Large and moderate deviation principles for McKean–Vlasov with jumps. Potential Anal., in press

  27. Liu, W., Tao, C., Zhu, J.: Large deviation principle for a class of SPDE with locally monotone coefficients. Sci. China Math. 63(6), 1181–1202 (2020)

    Article  MathSciNet  Google Scholar 

  28. Márquez-Carreras, D., Sarrà, M.: Large deviation principle for a stochastic heat equation with spatially correlated noise. Electron. J. Probab. 8(12), 1–39 (2003)

    MathSciNet  Google Scholar 

  29. Matoussi, A., Sabbagh, W., Zhang, T.: Large deviation principles of obstacle problems for quasilinear stochastic PDEs. Appl. Math. Optim. 83(2), 849–879 (2021)

    Article  MathSciNet  Google Scholar 

  30. Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process. Stoch. Process. Appl. 72, 187–204 (1997)

    Article  MathSciNet  Google Scholar 

  31. Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116, 421–443 (2000)

    Article  MathSciNet  Google Scholar 

  32. Pipiras, V., Taqqu, M.S.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118(2), 251–91 (2000)

    Article  MathSciNet  Google Scholar 

  33. Ren, J., Zhang, X.: Freidlin–Wentzell’s large deviations for stochastic evolution equations. J. Funct. Anal. 254, 3148–3172 (2008)

    Article  MathSciNet  Google Scholar 

  34. Song, J.: SPDEs with colored Gaussian noise: a survey. Commun. Math. Stat. 6(4), 481–492 (2018)

    Article  MathSciNet  Google Scholar 

  35. Song, J., Song, X., Xu, F.: Fractional stochastic wave equation driven by a Gaussian noise rough in space. Bernoulli 26(4), 2699–2726 (2020)

    Article  MathSciNet  Google Scholar 

  36. Wang, R., Zhang, S., Zhai, J.: Large deviation principle for stochastic Burgers type equation with reflection. Commun. Pure Appl. Anal. 21(1), 213–238 (2022)

    MathSciNet  Google Scholar 

  37. Wu, W., Zhai, J.: Large deviations for stochastic porous media equation on general measure space. J. Differ. Equ. 269, 10002–10036 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Xiong, J., Zhai, J.: Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli 24, 2842–2874 (2018)

    Article  MathSciNet  Google Scholar 

  39. Xu, T., Zhang, T.: White noise driven SPDEs with reflection: existence, uniqueness and large deviation principles. Stoch. Process. Appl. 119, 3453–3470 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments and corrections which have led to significant improvement of this paper. The research of R. Li is partially supported by Shanghai Sailing Program Grants 21YF1415300 and NNSFC Grant 12101392. The research of R. Wang is partially supported by NNSFC Grants 11871382 and 12071361. The research of B. Zhang is partially supported by NNSFC Grants 11971361 and 11731012.

Author information

Authors and Affiliations

Authors

Contributions

RL, RW and BZ contributed to writing—reviewing and editing.

Corresponding author

Correspondence to Ran Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we give some lemmas related to the heat kernel \(p_t(x)\). Recall \(\lambda (x)\) defined by (2.13), \(D_{t}(x,h)\), \(\Box _{t}(x,y,h)\) defined by (3.8) and (3.9), respectively.

Lemma 6.1

([22, Lemma 2.5]) For any \(T>0\),

$$\begin{aligned} \sup _{t\in [0,T]}\sup _{x\in \mathbb {R}} \frac{1}{\lambda (x)}\int _{\mathbb {R}} p_{t}(x-y) \lambda (y) \textrm{d}y<\infty . \end{aligned}$$
(6.1)

Lemma 6.2

([22, Lemma 2.8]) For any \(H\in (\frac{1}{4},\frac{1}{2})\), there exists some constant \(C_H\) such that

$$\begin{aligned} \int _{\mathbb {R}^2}|D_{t}(x,h)|^2\cdot |h|^{2H-2}\textrm{d}h\textrm{d}x= C_Ht^{H-1}, \end{aligned}$$
(6.2)

and

$$\begin{aligned} \int _{\mathbb {R}^3}|\Box _{t}(x,y,h)|^2\cdot |h|^{2H-2}\cdot |y|^{2H-2}\textrm{d}y\textrm{d}h\textrm{d}x= C_H t^{2H-\frac{3}{2}}. \end{aligned}$$
(6.3)

Lemma 6.3

([22, Lemma 2.10]) For any \(t>0\), there exists some constant \(C_H\) such that

$$\begin{aligned} \int _{\mathbb {R}}|D_{t}(x,h)|^2\cdot |h|^{2H-2}\textrm{d}h\le C_H\left( t^{H-\frac{3}{2}}\wedge \frac{|x|^{2H-2}}{\sqrt{t}}\right) , \end{aligned}$$
(6.4)

where \(0<H<\frac{1}{2}\).

Lemma 6.4

([22, Lemma 2.11]) For any \(t>0\), there exists some constant \(C_H\) such that

$$\begin{aligned} \int _{\mathbb {R}^2}|\Box _{t}(x,y,h)|^2\cdot |h|^{2H-2}\cdot |y|^{2H-2}\textrm{d}y\textrm{d}h\le C_H\left( t^{2H-2}\wedge \frac{|x|^{2H-2}}{t^{1-H}}\right) . \end{aligned}$$
(6.5)

Lemma 6.5

([22, Lemma 2.12]) For any \(t>0\), there exists some constant \(C_{T,H}\) such that

$$\begin{aligned} \int _{\mathbb {R}^2}|D_{t}(x,h)|^2\cdot |h|^{2H-2}\lambda (z-x)\textrm{d}x\textrm{d}h\le C_{T,H}t^{H-1}\lambda (z), \end{aligned}$$
(6.6)

and

$$\begin{aligned} \int _{\mathbb {R}^3}|\Box _{t}(x,y,h)|^2\cdot |h|^{2H-2}\cdot |y|^{2H-2}\lambda (z-x)\textrm{d}x\textrm{d}y\textrm{d}h\le C_{T,H}t^{2H-\frac{3}{2}}\lambda (z). \end{aligned}$$
(6.7)

Lemma 6.6

([22, (4.29)], [22, (4.32)]) For some fixed \(\gamma \in (0,1)\) and \(\alpha \in (0,1)\), the following two inequalities hold:

$$\begin{aligned} |(t+h)^{\alpha -1}-t^{\alpha -1}|\lesssim |t|^{\alpha -1-\gamma }h^\gamma , \end{aligned}$$
(6.8)

and

$$\begin{aligned} |p_{t+h}(x)-p_{t}(x)| \lesssim h^\gamma t^{-\gamma }\left[ p_{\frac{2}{\gamma }(t+h)}(x)+p_{\frac{2t}{\gamma }}(x)\right] . \end{aligned}$$
(6.9)

Lemma 6.7

([22, Theorem 4.4]) A sequence \(\{\mathbb {P}_n\}^\infty _{n=1}\) of probability measures on \((\mathcal {C}([0,T]\times \mathbb {R}),\mathcal {B}(\mathcal {C}([0,T]\times \mathbb {R})))\) is tight if and only if the following conditions hold:

  1. (i).

    \(\displaystyle \lim _{\lambda \uparrow \infty } \sup _{n\ge 1} \mathbb {P}_n\left( \{\omega \in \mathcal {C}([0,T]\times \mathbb {R}):|\omega (0,0)|>\lambda \}\right) =0\).

  2. (ii).

    For any \(R>0\) and \(\gamma >0\),

    $$\begin{aligned} \lim _{\delta \downarrow 0}\sup _{n\ge 1}\mathbb {P}_n\left( \left\{ \omega \in \mathcal {C}([0,T]\times \mathbb {R}):m^{T,R}(\omega ,\theta )>\gamma \right\} \right) =0{,} \end{aligned}$$

    where

    $$\begin{aligned} m^{T,R}(\omega ,\theta ):=\max \limits _{\begin{array}{c} |t-s|+|x-y|\le \theta , \\ 0\le t,s\le T;\,-R\le x, y\le R \end{array}}\left| \omega (t,x)-\omega (s,y)\right| \end{aligned}$$

    is the modulus of continuity on \([0,T]\times [-R,R]\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, R. & Zhang, B. A Large Deviation Principle for the Stochastic Heat Equation with General Rough Noise. J Theor Probab 37, 251–306 (2024). https://doi.org/10.1007/s10959-022-01228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01228-3

Keywords

Mathematics Subject Classification (2020)

Navigation