Skip to main content
Log in

Error distribution of the Euler approximation scheme for stochastic Volterra equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The purpose of this paper is to establish the convergence in distribution of the normalized error in the Euler approximation scheme for stochastic Volterra equations driven by a standard Brownian motion, with a kernel of the form \((t-s)^\alpha \), where \(\alpha \in \left( -\frac{1}{2}, \frac{1}{2}\right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, M., Mizel, V.: Volterra equations with Itô integrals I. J. Integral Equ. 2, 187–245 (1980)

    MATH  Google Scholar 

  2. Berger, M., Mizel, V.: Volterra equations with Itô integrals II. J. Integral Equ. 4, 319–337 (1980)

    MATH  Google Scholar 

  3. Cochran, W.G., Lee, J.S., Potthoff, J.: Stochastic Volterra equations with singular kernels. Stoch. Process. Appl. 56, 337–349 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corcuera, J.M., Nualart, D., Podolskij, M.: Asymptotics of weighted random sums. Commun. Appl. Ind. Math. (2014). https://doi.org/10.1685/journal.caim.486

    Article  MathSciNet  MATH  Google Scholar 

  5. Coutin, L., Decreusefond, L.: Stochastic Volterra equations with singular kernels. In: Cruzeiro, A.B., Zambrini, J.-C. (eds.) Stochastic Analysis and Mathematical Physics, pp. 39–50. Birkhäuser, Boston (2001)

    Chapter  MATH  Google Scholar 

  6. Decreusefond, L.: Regularity properties of some stochastic Volterra equations with singular kernels. Potential Anal. 16, 139–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jacod, J., Protter, P.: Asymptotic errors distributions for the Euler method for stochastic differential equations. Ann. Probab. 26, 267–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  9. Li, M., Huang, C., Hu, Y.: Numerical methods for stochastic Volterra integral equations with doubly weakly singular kernels. IMA J. Numer. Anal. 42, 2656–2683 (2021)

  10. Pardoux, E., Protter, P.: Stochastic Volterra equations with anticipating coefficients. Ann. Probab. 18, 1635–1655 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Protter, P.: Volterra equations driven by semimartingales. Ann. Probab. 13, 519–503 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. Springer, Berlin (1999)

    Google Scholar 

  13. Richard, A., Tan, X., Yang, F.: Discrete-time simulation of stochastic Volterra equations. Stoch. Process. Appl. 141, 109–138 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Z.: Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschtiz coefficients. Stat. Probab. Lett. 78, 1062–1071 (2008)

    Article  MATH  Google Scholar 

  15. Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 327, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, X.C.: Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differ. Equ. 244, 2226–2250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X.C.: Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. J. Funct. Anal. 258, 1361–1425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees for a thorough reading and a number of helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhargobjyoti Saikia.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work by D. Nualart has been supported NSF Grant DMS-2054735. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Appendix

Appendix

We first recall the following extended version of Gronwall’s inequality (see, for instance, [15, Corollary 2]).

Lemma 6.1

Fix \(\alpha >-1\). Suppose that \(\{u(t), t\in [0,T]\}\) is a nonnegative integrable function such that

$$\begin{aligned} u(t) \le a + b \int _0^t (t-s)^\alpha u(s)\text {d}s, \end{aligned}$$

for all \(t\in [0,T]\) and for some constants \(a,b \ge 0\). Then,

$$\begin{aligned} u(t) \le a E_{\alpha +1} (b \Gamma (\alpha +1) t^{\alpha +1}), \end{aligned}$$

where \(E_{\alpha +1} \) is the Mittag–Leffler function defined by \(E_{\alpha +1} (z)=\sum _{k=0} ^\infty \frac{z^k}{ \Gamma ( n(\alpha +1)+1)}\).

In the next lemma, we establish the Hölder continuity in \(L^2\) of the processes \({\widetilde{A}}^{n,1}_t\) and \({\widetilde{C}}_t\) defined in (4.69) and (4.8), respectively.

Lemma 6.2

Consider the processes \({\widetilde{A}}^{n,1}_t\) and \({\widetilde{C}}_t\) defined in (4.69) and (4.8), respectively. There exists a constant \(C>0\), such that for all \(t_1, t_2\in [0,T]\),

$$\begin{aligned} E[| {\widetilde{A}}^{n,1}_{t_1} -{\widetilde{A}}^{n,1}_{t_2}|^2] \le C |t_1-t_2|^{2\alpha +1}, \end{aligned}$$
(6.1)

and

$$\begin{aligned} E[| {\widetilde{C}}_{t_1} -{\widetilde{C}}_{t_2}|^2] \le C |t_1-t_2|^{2\alpha +1}. \end{aligned}$$
(6.2)

Proof

Let us first show (6.1). Recall that, for \(0\le u \le s \le T\), \(\psi _{n,1}(u,s)=(s-\eta _n(u))^\alpha -(s-u)^\alpha \) and \(\eta _n(u)= \frac{\lfloor nu \rfloor }{n}\). For any \(0\le t_1<t_2\le T\), we have

$$\begin{aligned} E[| {\widetilde{A}}^{n,1}_{t_1} -{\widetilde{A}}^{n,1}_{t_2}|^2]&= n^{2\alpha +1} \int _0^{t_1} |(t_2-s)^{ \alpha } -(t_1-s)^\alpha |^2 E\left[ (\sigma '\sigma )^2(X_s) \left( \int _0^s \psi _{n,1}(u,s)\text {d}W_u \right) ^2 \right] \text {d}s \\&\qquad + n^{2\alpha +1} \int _{t_1} ^{t_2} (t_2-s)^{2 \alpha } E\left[ (\sigma '\sigma )^2(X_s) \left( \int _0^s \psi _{n,1}(u,s)\text {d}W_u \right) ^2 \right] \text {d}s \\&\le C n^{2\alpha +1} \int _0^{t_1} |(t_2-s)^{ \alpha } -(t_1-s)^\alpha |^2 \int _0^s \psi ^2_{n,1}(u,s) \text {d}u \text {d}s \\&\qquad + C n^{2\alpha +1} \int _{t_1} ^{t_2} (t_2-s)^{2 \alpha } \int _0^s \psi ^2_{n,1}(u,s) \text {d}u \text {d}s . \end{aligned}$$

Applying Lemma 6.5 yields,

$$\begin{aligned} E[| {\widetilde{A}}^{n,1}_{t_1} -{\widetilde{A}}^{n,1}_{t_2}|^2]&\le C \int _0^{t_1} |(t_2-s)^{ \alpha } -(t_1-s)^\alpha |^2 \text {d}s + C \int _{t_1} ^{t_2} (t_2-s)^{2 \alpha }\text {d}s. \end{aligned}$$

Making the change of variable \(s= t_1 - (t_2-t_1)y\) in the first integral of the above display, yields

$$\begin{aligned} E[| {\widetilde{A}}^{n,1}_{t_1} -{\widetilde{A}}^{n,1}_{t_2}|^2]&\le C (t_2-t_1)^{2\alpha +1} \int _0^{\frac{t_1}{t_2-t_1}} |(y+1)^\alpha -y^\alpha |^2 \text {d}y+ C \int _{t_1} ^{t_2} (t_2-s)^{2 \alpha }\text {d}s \\&\le C |t_1-t_2|^{2\alpha +1}. \end{aligned}$$

The proof of the inequality (6.2) is analogous, but instead of Lemma 6.5 we make use of inequality (3.2).

The next results are technical lemmas that have been used several time in the proofs.

Lemma 6.3

Recall that \(\eta _n(s)= \frac{\lfloor ns \rfloor }{n}\). For any \(\alpha \in \left( -\frac{1}{2},\frac{1}{2}\right) \) and for any \(\delta >0\), there are positive constants \(C_1\), \(C_2\) and \(C_3\), such that for all \(t\in [0,1]\),

$$\begin{aligned} \int ^{t}_0\left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2\, \text {d}s \le C_1\, n^{-2\alpha -1} \end{aligned}$$
(6.3)

and

$$\begin{aligned} \int ^{(t-\delta )_+}_0\left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2\, \text {d}s \le C_2 n^{-2} \delta ^{2\alpha -1}. \end{aligned}$$
(6.4)

Proof

By the mean value theorem, for any \(0 \le s<t \le 1\), we have

$$\begin{aligned} \left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2\le (t-s)^{2\alpha -2}(s-\eta _n(s))^2. \end{aligned}$$
(6.5)

Let us first show the inequality (6.3). We can assume that \(t>\frac{1}{n}\), because in the case \(t\le \frac{1}{n}\), the inequality can be easily proved. We decompose the interval [0, t] into the union of the intervals \(\left[ 0, \frac{\lfloor nt\rfloor -1}{n}\right] \) and \(\left[ \frac{\lfloor nt\rfloor -1}{n},t\right] \). For the first interval, we can write

$$\begin{aligned} \int ^{\frac{\lfloor nt\rfloor -1}{n}}_0\left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2\, \text {d}s \nonumber \\&\le \sum _{i=0}^{\lfloor nt\rfloor -2}\int _{\frac{i}{n}}^{\frac{i+1}{n}}(t-s)^{2\alpha -2}(s-\eta _n(s))^2\text {d}s \nonumber \\&\le \sum _{i=0}^{\lfloor nt\rfloor -2}\int _{\frac{i}{n}}^{\frac{i+1}{n}}\left( t-\frac{i+1}{n}\right) ^{2\alpha -2} n^{-2}\text {d}s \nonumber \\&\le \sum _{i=0}^{\lfloor nt\rfloor -2}\frac{(nt-i-1)^{2\alpha -2}}{n^{2\alpha -2}} n^{-3} \nonumber \\&=\frac{1}{n^{2\alpha +1}}\sum _{i=0}^{\lfloor nt\rfloor -2}(nt-i-1)^{2\alpha -2}\nonumber \\&\le \frac{1}{n^{2\alpha +1}} \sum _{j=1} ^\infty j^{2\alpha -2}. \end{aligned}$$
(6.6)

Next for any \( s\in \left[ \frac{\lfloor nt\rfloor -1}{n},t\right] \), we have

$$\begin{aligned} \left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2&\le C\left[ (t-\eta _n(s))^{2\alpha }+(t-s)^{2\alpha }\right] \\&\le {\left\{ \begin{array}{ll} C n^{-2\alpha } &{} \alpha \ge 0 \\ C(t-s)^{2\alpha }&{} \alpha < 0 \end{array}\right. } . \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{\frac{\lfloor nt\rfloor -1}{n}}^t \left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2\text {d}s \le Cn^{-2\alpha -1}. \end{aligned}$$
(6.7)

Thus, combining (6.6) and (6.7) we obtain (6.3).

The inequality (6.4) follows easily from (6.5). Indeed, we can assume that \(t>\delta \), and in this case

$$\begin{aligned} \int _{0}^{t-\delta }\left[ (t-\eta _n(s))^{\alpha }-(t-s)^{\alpha }\right] ^2\, \text {d}s&\le \int _{0}^{t-\delta }(t-s)^{2\alpha -2}(s-\eta _n(s))^2\text {d}s\\&\le \frac{1}{n^2}\int _{0}^{t-\delta }(t-s)^{2\alpha -2}\text {d}s\\&= \frac{1}{n^2} \int _\delta ^t s^{2\alpha -2} \text {d}s \\&\le \frac{2\delta ^{2\alpha -1}}{n^2(1-2\alpha )} = C_2{n^{-2}} \delta ^{2\alpha -1}. \end{aligned}$$

Lemma 6.4

Let \(\psi _{n,2}(u,s)= (s- \eta _n(u))^\alpha - (\eta _n(s) -\eta _n(u))^\alpha \) for \(0\le u \le s \le T\) (see (4.28)) and recall that \(\eta _n(u)= \frac{\lfloor nu \rfloor }{n}\). Then, there exists a constant \(C>0\) such that for any \(s\ge 0\), we have

$$\begin{aligned} n^{2\alpha +1} \int _0^{\eta _n(s)} \psi ^2_{n,2}(u,s) \text {d}u \le C. \end{aligned}$$

Proof

We have, using the mean value theorem,

$$\begin{aligned} \int _0^{\eta _n(s)} \psi ^2_{n,2}(u,s) \text {d}u&= \int _0^{\eta _n(s)} [(s-\eta _n(u))^{\alpha }-(\eta _n(s)-\eta _n(u))^{\alpha }]^2 \text {d}u\\&\le \alpha ^2 (s- \eta _n(s))^2 \int _0^{\eta _n(s)} (\eta _n(s)-\eta _n(u))^{2\alpha -2} \text {d}u \\&\le C n^{-3} \sum _{i=0} ^{\lfloor ns \rfloor -1} \left( \eta _n(s) -\frac{i}{n} \right) ^{2\alpha -2} \\&= Cn^{-2\alpha -1} \sum _{i=0} ^{\lfloor ns \rfloor -1} (\eta _n-i)^{2\alpha -2}. \end{aligned}$$

Since \(2\alpha -2 <-1\) the series \(\sum _{j=1} ^\infty j^{2\alpha -2}\) is convergent, and this completes the proof of the lemma.

Lemma 6.5

Recall that (see (4.10)), for \(0\le u \le s \le T\), \(\psi _{n,1}(u,s)=(s-\eta _n(u))^\alpha -(s-u)^\alpha \) and \(\eta _n(u)= \frac{\lfloor nu \rfloor }{n}\). Then, there exists a constant \(C>0\) such that for any \(s\ge 0\), we have

$$\begin{aligned} n^{2\alpha +1} \int _0^{s} \psi ^2_{n,1}(u,s) \text {d}u \le C. \end{aligned}$$

Proof

We have, using the mean value theorem,

$$\begin{aligned} \int _0^{s} \psi ^2_{n,1}(u,s) \text {d}u&= \int _0^{s} [(s-\eta _n(u))^{\alpha }-(s-u)^{\alpha }]^2 \text {d}u\\&= \sum _{i=0} ^{\lfloor ns \rfloor } \int _{\frac{i}{n}} ^{\frac{i+1}{n} \wedge s} \left[ \left( s-\frac{i}{n}\right) ^\alpha - (s-u)^\alpha \right] ^2 \text {d}u\\&= n^{-2\alpha -1}\sum _{i=0} ^{\lfloor ns \rfloor } \int _{i} ^{ (i+1) \wedge ns } [ (ns-i)^\alpha - (ns-x)^\alpha ]^2 \text {d}x \\&\le n^{-2\alpha -1}\sum _{k=0} ^{\infty } \int _{0} ^{ 1 \wedge (ns -\lfloor ns \rfloor +k)} [ (ns-\lfloor ns \rfloor +k)^\alpha - (ns-\lfloor ns \rfloor +k-x)^\alpha ]^2 \text {d}x, \end{aligned}$$

which is uniformly bounded by a constant C that does not depend on n and s.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nualart, D., Saikia, B. Error distribution of the Euler approximation scheme for stochastic Volterra equations. J Theor Probab 36, 1829–1876 (2023). https://doi.org/10.1007/s10959-022-01222-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01222-9

Keywords

Mathematics Subject Classification (2020)

Navigation