Skip to main content
Log in

A Support Theorem for Stochastic Differential Equations Driven by a Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we prove a support theorem for a class of Itô–Volterra equations related to the fractional Brownian motion. The simplified method developed by Millet and Sanz-Solé plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Czechoslovak North CHolland, Amsterdam, Kodansha, Tokyo (1981)

    MATH  Google Scholar 

  2. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge, UK (1990)

    MATH  Google Scholar 

  3. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Cham (1998)

    MATH  Google Scholar 

  4. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2007)

    MATH  Google Scholar 

  5. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36, 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wong, E., Zakai, M.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3, 213–229 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Kodansha, Amsterdam (1981)

    MATH  Google Scholar 

  8. Grecksch, W., Anh, V.V.: Approximation of stochastic differential equations with modified fractional Brownian motion. Z. Anal. Anwendungen. 17, 715–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, sec Springer, New York (1991)

    MATH  Google Scholar 

  10. Zhang, T.: Strong convergence of Wong-Zakai approximations of reflected SDEs in a multidimensional general domain. Potential Anal. 41, 783–815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, Y., Matoussi, A., Zhang, T.: Wong-Zakai approximations of backward doubly stochastic differential equations. Stoch. Process. Appl. 125, 4375–4404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tudor, C.: Wong-Zakai type approximations for stochastic differential equations driven by a fractional Brownian motion. Z. Anal. Anwend. 28, 165–182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ren, J., Xu, S.: Support theorem for stochastic variational inequalities. Bull. Sci. Math. 134(8), 826–856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, J., Zhang, X.: Limit theorems for stochastic differential equations with discontinuous coefficients. Siam J. Math. Anal. 43, 302–321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ren, J., Zhang, X.: Quasi-sure analysis of two-parameter stochastic differential equations. Stoch. Rep. 72, 251–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren, J., Wu, J.: On approximate continuity and the support of reflected stochastic differential equations. Ann. Probab. 44, 2064–2116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, J., Zhang, M.: Limit theorems and the support of SDEs with oblique reflections on nonsmooth domains. J. Math. Anal. Appl. 466, 523–566 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, J., Xu, J.: Support theorem for stochastic differential equations with Sobolev coefficients. Potential. Anal. 51, 333–360 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coutin, L., Decreusefond, L.: Stochastic differential equations driven by a fractional Brownian motion. Unpublished manuscript (1997)

  20. Coutin, L., Decreusefond, L.: Abstract nonlinear filtering theory in the presence of fractional Brownian motion. Ann. Appl. Probab. 9, 1058–1090 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Coutin, L., Decreusefond, L.: Stochastic Volterra equations with singular kernel, In: Stochastic Analysis and Mathematical Physics. Progress Prob. 50. Boston (MA): Birkhäuser, 39-50, (2001)

  22. Decreusefond, L., Ustünel, S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stroock, D. W., Varadhan, S. R. S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of sixth Berkeley symposium on mathematical statististics and probability, III. 98, 333-359, (1972)

  24. Triebel, H.: Interpolation Theory. Function Spaces, Differential Operators, North-Holland, Amsterdam, New York, Oxford (1978)

  25. Millet, A., Sanz-Solé, M.: A simple proof of the support theorem for diffusion processes, Séminaire de Probabilités, XXVIII, Lecture Notes in Math., 1583, Springer, Berlin, (1994)

  26. Nualart, D.: The Malliavin Calculus and Related Topics, second ed., Probab. Appl. (N.Y.), Springer-Verlag, Berlin, (2006)

Download references

Acknowledgements

The authors are very grateful to Professor Jicheng Liu for his encouragement and help.

The authors also acknowledge the support provided by key scientific research project plans of Henan province advanced universities No.21A110011 and NSFs of China Nos.11971154 and 11901154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Sun, Y. & Ren, J. A Support Theorem for Stochastic Differential Equations Driven by a Fractional Brownian Motion. J Theor Probab 36, 728–761 (2023). https://doi.org/10.1007/s10959-022-01186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01186-w

Keywords

Mathematics Subject Classification (2020)

Navigation