Skip to main content
Log in

Octonionic Brownian Windings

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We define and study windings along Brownian paths on octonionic, Euclidean, projective, and hyperbolic spaces which are isometric to 8-dimensional Riemannian model spaces. In particular, the asymptotic laws of these windings are shown to be Gaussian for flat and spherical geometries while the hyperbolic winding exhibits different long-time behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39(2), 145–205 (2002). https://doi.org/10.1090/S0273-0979-01-00934-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Baudoin, F.: Skew-product decompositions of Brownian motions on manifolds: a probabilistic aspect of the Lichnerowicz–Szabo theorem. Bull. Sci. Math. 126(6), 481–491 (2002). https://doi.org/10.1016/S0007-4497(02)01123-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Baudoin, F., Cho, G.: The subelliptic heat kernel of the octonionic hopf fibration. Potential Anal. (2020). https://doi.org/10.1007/s11118-020-09854-4

    Article  MATH  Google Scholar 

  4. Baudoin, F., Cho, G.: The subelliptic heat kernel of the octonionic anti-de Sitter fibration. SIGMA Symmet. Integr. Geom. Methods Appl. 17, 9 (2021). https://doi.org/10.3842/SIGMA.2021.014

    Article  MathSciNet  MATH  Google Scholar 

  5. Baudoin, F., Demni, N., Wang, J.: Quaternionic stochastic areas. Stochastic Process. Appl. 131, 311–339 (2021). https://doi.org/10.1016/j.spa.2020.09.002

    Article  MathSciNet  Google Scholar 

  6. Baudoin, F., Wang, J.: Stochastic areas, winding numbers and Hopf fibrations. Probab. Theory Relat. Fields 169(3–4), 977–1005 (2017). https://doi.org/10.1007/s00440-016-0745-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Baudoin, F., Wang, J.: Quaternionic Brownian Windings. arxiv preprint (2019)

  8. Besse, A.L.: Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer, Berlin: 93, With appendices by D. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan, B. A (1978)

  9. Besse, A.L.: Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer, Berlin: 93, With appendices by D. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan, B. A (1978)

  10. Escobales, R.H.: Riemannian submersions with totally geodesic fibers. J. Differ. Geom. 10, 253–276 (1975)

    Article  MathSciNet  Google Scholar 

  11. Godoy Molina, M., Irina, M.: Sub-Riemannian geometry of parallelizable spheres. Rev. Mat. Iberoam. 27(3), 997–1022 (2011). https://doi.org/10.4171/rmi/661

    Article  MathSciNet  MATH  Google Scholar 

  12. Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965). https://doi.org/10.1007/BF02391776

    Article  MathSciNet  MATH  Google Scholar 

  13. Helgason, S., Groups and Geometric Analysis. Pure and Applied Mathematics, p. 113. Academic Press, Inc., Orlando (1984). [Integral geometry, invariant differential operators, and spherical functions. MR754767]

  14. Kraußhar, R.: Function theories in Cayley–Dickson algebras and number theory. Milan J. Math. 89(1), 19–44 (2021). https://doi.org/10.1007/s00032-021-00325-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Pauwels, E.J., Rogers, L.C.G.: Skew-product decompositions of Brownian motions: geometry of random motion (Ithaca, N.Y., 1987). Contemp. Math. Am. Math. Soc. 73, 237–262 (1988). https://doi.org/10.1090/conm/073/954643

    Article  Google Scholar 

  16. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Third, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-06400-9

    Book  Google Scholar 

  17. Watanabe, S.: Asymptotic Windings of Brownian Motion Paths on Riemann Surfaces, vol. 63, pp. 441–464 [Recent Developments in Infinite-Dimensional Analysis and Quantum Probability] (2000). https://doi.org/10.1023/A:1010756726463

  18. Yor, M.: Loi de lindice du lacet brownien, et distribution de Hartman-Watson. Z. Wahrsch. Verw. Gebiete 53(1), 71–95 (1980). https://doi.org/10.1007/BF00531612

    Article  MathSciNet  MATH  Google Scholar 

  19. Yor, M.: Remarques sur une formule de Paul Lévy. Seminar on Probability, XIV (Paris, 1978/1979) (French). Lecture Notes in Mathematics, vol. 784, pp. 343–346. Springer, Berlin (1980)

Download references

Acknowledgements

The authors thank the anonymous referee for a careful reading and remarks that greatly improved the presentation of the paper. The second author is supported by National Science Foundation grant DMS-1901315. Both authors thank professor Fabrice Baudoin for the very helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, G., Yang, G. Octonionic Brownian Windings. J Theor Probab 35, 1956–1973 (2022). https://doi.org/10.1007/s10959-021-01127-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01127-z

Keywords

Mathematics Subject Classification (2020)

Navigation