Skip to main content
Log in

Statistical Properties of Eigenvalues of Laplace–Beltrami Operators

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the eigenvalues of a Laplace–Beltrami operator defined on the set of the symmetric polynomials, where the eigenvalues are expressed in terms of partitions of integers. To study the behaviors of these eigenvalues, we assign partitions with the restricted uniform measure, the restricted Jack measure, the uniform measure, or the Plancherel measure. We first obtain a new limit theorem on the restricted uniform measure. Then, by using it together with known results on other three measures, we prove that the global distribution of the eigenvalues is asymptotically a new distribution \(\mu \), the Gamma distribution, the Gumbel distribution, and the Tracy–Widom distribution, respectively. The Tracy–Widom distribution is obtained for a special case only due to a technical constraint. An explicit representation of \(\mu \) is obtained by a function of independent random variables. Two open problems are also asked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baik, J., Rains, E.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M., Gostiaux, B.: Differential geometry: manifolds, curves and surfaces (translated by S. Levy). Graduate Texts in Mathematics, No. 115, Springer, New York (1988)

  4. Borodin, A., Gorin, V.: Lectures on integrable probability (2012). arXiv preprint arXiv:1212.3351

  5. Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc. 13(3), 481–515 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borthwick, D.: Introduction to spectral theory on hyperbolic surfaces. In: Spectral Geometry, Proceedings of Symposium in Pure Mathematics, vol. 84, AMS, Providence, RI, pp. 3–48 (2012)

  7. Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  8. Dołega, M., Féray, V.: Gaussian fluctuations of young diagrams and structure constants of jack characters (2014). arXiv preprint arXiv:1402.4615

  9. Dumitriu, I., Edelman, A., Shuman, G.: MOPS: multivariate orthogonal polynomials (symbolically). J. Symb. Comput. 42, 587–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdös, P., Lehner, J.: The distribution of the number of summands in the partitions of a positive integer. Duke Math. J. 8, 335–345 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  11. Féray, V., Méliot, P.-L.: Asymptotics of \(q\)-Plancherel measures. Probab. Theory Rel. Fields 152(3–4), 589–624 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Forrester, P.: Log-Gases and Random Matrices (London Mathematical Society Monographs). Princeton University Press, Princeton (2010)

    Google Scholar 

  13. Frame, J.S., de Robinson, G.B., Thrall, R.M.: The hook graphs of the symmetric groups. Can. J. Math. 6, 316–324 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fristedt, B.: The structure of random partitions of large integers. Trans. Am. Math. Soc. 337(2), 703–735 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fristedt, B., Gray, L.: A Modern Approach to Probability Theory. Probability and Its Applications. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  16. Frobenuis, F.: Über die charaktere der symmetrischen gruppe. Königliche Akademie der Wissenschaften, pp. 516–534 (1900)

  17. Fulman, J.: Stein’s method, Jack measure, and the Metropolis algorithm. J. Combin. Theory Ser. A 108(2), 275–296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fulton, W., Harris, J.: Representation Theory: A First Course, vol. 129. Springer, Berlin (1999)

    MATH  Google Scholar 

  19. Ivanov, V., Olshanski, G.: Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In: Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Science Series II Physics, Mathematics and Chemistry, vol. 74, Kluwer, Dordrecht, pp. 93–151 (2001)

  20. Jiang, T.: A variance formula related to quantum conductance. Phys. Lett. A 373, 2117–2121 (2009)

    Article  MATH  Google Scholar 

  21. Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153(1), 259–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kerov, S.V.: \(q\)-analogue of the hook walk algorithm and random Young tableaux. Funktsional. Anal. i Prilozhen. 26(3), 35–45 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kerov, S.V.: Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis (Translations of Mathematical Monographs). American Mathematical Society, Providence (2003)

    Google Scholar 

  24. Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions, Wiley Series in Probability and Statistics: Applied Probability and Statistics, Models and Applications, vol. 1, 2nd edn. Wiley-Interscience, New York (2000)

  25. Logan, B.F., Shepp, L.A.: A variational problem for random Young tableaux. Adv. Math. 26(2), 206–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Macdonald, I.G.: Symmetric functions and Hall polynomials. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2nd edn. With contributions by A. Zelevinsky, Oxford Science Publications (1995)

  27. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Sbornik Math. 1(4), 457–483 (1967)

    Article  Google Scholar 

  28. Matsumoto, S.: Jack deformations of Plancherel measures and traceless Gaussian random matrices. Electron. J. Combin. 15(1), R149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Méliot, P.L.: The cut-off phenomenon for Brownian motions on compact symmetric spaces. Potential Anal. 40(4), 427–509 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  31. Okounkov, A.: Random matrices and random permutations. Int. Math. Res. Not. 20, 1043–1095 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Okounkov, A.: The uses of random partitions (2003). http://arxiv.org/pdf/math-ph/0309015.pdf

  33. Okounkov, A.: Random partitions (2013). http://www.math.uni-augsburg.de/andrejewski-2013/data/encycl.pdf

  34. Pittel, B.: On a likely shape of the random Ferrers diagram. Adv. Appl. Math. 18(4), 432–488 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rabinowitz, S.: The volume of an n-simplex with many equal edges. Missouri J. Math. Sci. 1, 11–17 (1989)

    Article  MATH  Google Scholar 

  36. Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum and a diffusion. J. Am. Math. Soc. 24, 919–944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 707. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  38. Shubin, M.A: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (Translated from the 1978 Russian original by Stig I. Andersson) (2001)

  39. Stanley, R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stein, P.: A note on the volume of a simplex. Am. Math. Mon. 73(3), 299–301 (1966)

    Article  MathSciNet  Google Scholar 

  41. Vershik, A.M.: Statistical mechanics of combinatorial partitions, and their limit configurations. Funktsional. Anal. i Prilozhen. 30(2), 19–39 (1996)

    Article  MathSciNet  Google Scholar 

  42. Vershik, A.M., Kerov, S.V.: Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR 233(6), 1024–1027 (1977)

    MathSciNet  MATH  Google Scholar 

  43. Weyl, H.: Über die asymptotische verteilung der eigenwerte, pp. 110–117. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1911)

    MATH  Google Scholar 

  44. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2), 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  45. Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153–209 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Woodward, C.T.: Localization for the norm-square of the moment map and the two-dimensional Yang-Mills integral. J. Symplectic Geom. 3(1), 17–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Professors Valentin Féray, Sho Matsumoto and Andrei Okounkov very much for communications and discussions. We thank the anonymous referee for the careful reading of our manuscript and many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Tiefeng Jiang was supported in part by NSF Grant DMS-1209166 and DMS-1406279.

Ke Wang was partially supported by Hong Kong RGC Grant GRF 16301618, GRF 16308219 and ECS 26304920.

Appendix

Appendix

In this section we will prove (1.6), verify (2.77) and derive the density functions of the random variable appearing in Theorem 1 for two cases. They are placed in three subsections.

1.1 Proof of (1.6)

Recall \((2s-1)!!=1\cdot 3\cdots (2s-1)\) for integer \(s\ge 1\). Set \((-1)!!=1\). The following is Lemma 2.4 from Jiang [20].

Lemma 3.1

Suppose \(p\ge 2\) and \(Z_1, \ldots , Z_p\) are i.i.d. random variables with \(Z_1 \sim N(0,1).\) Define \(U_i=\frac{Z_i^2}{Z_1^2 + \cdots + Z_p^2}\) for \(1\le i \le p\). Let \(a_1, \ldots , a_p\) be non-negative integers and \(a=\sum _{i=1}^pa_i\). Then

$$\begin{aligned} E\left( U_1^{a_1}\cdots U_p^{a_p}\right) = \frac{\prod _{i=1}^p(2a_i-1)!!}{\prod _{i=1}^a(p+2i-2)}. \end{aligned}$$

Proof of (1.6). Recall (1.5). Write \((r-1)s^2=\sum _{i=1}^r x_i^2-r\bar{x}^2\). In our case,

$$\begin{aligned} \bar{x}= & {} \frac{1}{|\mathcal {P}_n(m)|}\sum _{\kappa \in \mathcal {P}_n(m)}\lambda _{\kappa }=E\lambda _{\kappa };\\ s^2= & {} \frac{1}{|\mathcal {P}_n(m)|-1}\sum _{\kappa \in \mathcal {P}_n(m)}\left( \lambda _{\kappa }-\bar{x}\right) ^2 \sim E\left( \lambda _{\kappa }^2\right) - \left( E\lambda _{\kappa }\right) ^2 \end{aligned}$$

as \(n\rightarrow \infty \), where E is the expectation about the uniform measure on \(\mathcal {P}_n(m)'\). Therefore,

$$\begin{aligned} \frac{\bar{x}}{n^2}=\frac{E\lambda _{\kappa }}{n^2}\ \ \text{ and }\ \ \frac{s^2}{n^4}\sim E\left( \frac{\lambda _{\kappa }}{n^2}\right) ^2 - \left( \frac{E\lambda _{\kappa }}{n^2}\right) ^2. \end{aligned}$$
(3.1)

From Lemma 2.3, we see a trivial bound that \(0\le \lambda _{\kappa }/n^2\le 1+\frac{\alpha }{2}m\) for each partition \(\kappa =(k_1, \ldots , k_m)\vdash n\) with \(k_m\ge 1.\) By Theorem 1, under \(\mathcal {P}_n'(m)\),

$$\begin{aligned} \frac{\lambda _{\kappa }}{n^2}\rightarrow \frac{\alpha }{2}\cdot Y\ \ \text{ and }\ \ Y:=\frac{\xi _1^2+\cdots + \xi _m^2}{\left( \xi _1+\cdots + \xi _m\right) ^2} \end{aligned}$$

as \(n\rightarrow \infty \), where \(\{\xi _i;\, 1\le i \le m\}\) are i.i.d. random variables with density \(e^{-x}I(x\ge 0)\). By bounded convergence theorem and (3.1),

$$\begin{aligned} \frac{\bar{x}}{n^2}\rightarrow \frac{\alpha }{2} EY\ \ \text{ and }\ \ \frac{s^2}{n^4} \rightarrow \frac{\alpha ^2}{4} \left[ E(Y^2)-(EY)^2\right] \end{aligned}$$
(3.2)

as \(n\rightarrow \infty \). Now we evaluate EY and \(E(Y^2)\). Easily,

$$\begin{aligned} EY= & {} m\cdot E\frac{\xi _1^2}{\left( \xi _1+\cdots + \xi _m\right) ^2};\nonumber \\ E(Y^2)= & {} m\cdot E\frac{\xi _1^4}{\left( \xi _1+\cdots + \xi _m\right) ^4} +m(m-1)\cdot E\frac{\xi _1^2\xi _2^2}{\left( \xi _1+\cdots + \xi _m\right) ^4}. \end{aligned}$$
(3.3)

Let \(Z_1, \ldots , Z_{2m}\) be i.i.d. random variables with N(0, 1) and \(U_i=\frac{Z_i^2}{Z_1^2 + \cdots + Z_{2m}^2}\) for \(1\le i \le 2m\). Evidently, \((Z_1^2+Z_2^2)/2\) has density function \(e^{-x}I(x\ge 0)\). Then,

$$\begin{aligned} \left( \frac{\xi _i}{\xi _1+\cdots + \xi _m}\right) _{1\le i \le m}\ \ \text{ and }\ \ \ \left( U_{2i-1}+U_{2i}\right) _{1\le i \le m} \end{aligned}$$

have the same distribution. Consequently, by taking \(p=2m\) in Lemma 3.1,

$$\begin{aligned} EY= & {} m\cdot E\left( U_1+U_2\right) ^2 \nonumber \\= & {} 2m\left[ E\left( U_1^2\right) +E\left( U_1U_2\right) \right] \nonumber \\= & {} 2m\left[ \frac{3}{4m(m+1)} + \frac{1}{4m(m+1)}\right] =\frac{2}{m+1}. \end{aligned}$$
(3.4)

Similarly,

$$\begin{aligned} E\frac{\xi _1^4}{\left( \xi _1+\cdots + \xi _m\right) ^4}= & {} E\left[ \left( U_1+U_2\right) ^4\right] \\= & {} 2E\left( U_1^4\right) +8 E\left( U_1^3U_2\right) + 6 E\left( U_1^2U_2^2\right) \\= & {} \frac{105}{8}\frac{1}{m(m+1)(m+2)(m+3)} + \frac{15}{2}\frac{1}{m(m+1)(m+2)(m+3)}\\&+ \frac{27}{8}\frac{1}{m(m+1)(m+2)(m+3)}\\= & {} \frac{24}{m(m+1)(m+2)(m+3)} \end{aligned}$$

and

$$\begin{aligned} E\frac{\xi _1^2\xi _2^2}{\left( \xi _1+\cdots + \xi _m\right) ^4}= & {} E\left[ \left( U_1+U_2\right) ^2\left( U_3+U_4\right) ^2\right] \\= & {} 4E\left( U_1^2U_2^2\right) + 8E\left( U_1^2U_2U_3\right) + 4E\left( U_1U_2U_3U_4\right) \\= & {} \frac{9}{4}\frac{1}{m(m+1)(m+2)(m+3)} + \frac{3}{2}\frac{1}{m(m+1)(m+2)(m+3)}\\&+ \frac{1}{4}\frac{1}{m(m+1)(m+2)(m+3)}\\= & {} \frac{4}{m(m+1)(m+2)(m+3)}. \end{aligned}$$

It follows from (3.3) and (3.4) that

$$\begin{aligned}&E(Y^2)=\frac{4m+20}{(m+1)(m+2)(m+3)};\\&E(Y^2)-(EY)^2 = \frac{4m+20}{(m+1)(m+2)(m+3)}-\left( \frac{2}{m+1}\right) ^2\\&\quad = \frac{4m-4}{(m+1)^2(m+2)(m+3)}. \end{aligned}$$

This and (3.2) say that

$$\begin{aligned} \frac{\bar{x}}{n^2}\rightarrow \frac{\alpha }{m+1}\ \ \text{ and } \ \ \frac{s^2}{n^4}\rightarrow \frac{(m-1)\alpha ^2}{(m+1)^2(m+2)(m+3)}. \end{aligned}$$

1.2 Verification of (2.77)

Verification of (2.77)

Trivially, \(\Omega (x)\) in (1.12) is an even function and \(\Omega (x)' = \frac{2}{\pi } \arcsin \frac{x}{2}\) for \(|x| < 2\). Then

$$\begin{aligned} \begin{aligned}&\int _{-2}^2 (\Omega (x) - x)^2 \,\hbox {d}x = \int _{-2}^2 \Omega (x)^2 \,\hbox {d}x + \int _{-2}^2 x^2 \,\hbox {d}x\\&\quad = x \cdot \Omega (x)^2 \Bigr |_{-2}^2 - \int _{-2}^2 x \cdot 2\Omega (x) \cdot \Omega (x)' \,\hbox {d}x + \frac{x^3}{3} \Bigr |_{-2}^2\\&\quad = \frac{64}{3} - \frac{16}{\pi ^2} \int _{0}^2 x \arcsin {\frac{x}{2}} \cdot \left( x \arcsin \frac{x}{2} +\sqrt{4-x^2} \right) \,\hbox {d}x. \end{aligned} \end{aligned}$$

Now, set \(x=2\sin \theta \) for \(0\le \theta \le \frac{\pi }{2}\), the above integral becomes

$$\begin{aligned}&\int _{0}^{\frac{\pi }{2}} 2\theta \sin \theta \left( 2\theta \sin \theta + 2\cos \theta \right) 2\cos \theta \, \hbox {d}\theta \nonumber \\&\quad = 2\int _{0}^{\frac{\pi }{2}}\left( \theta \sin \theta +\theta \sin (3\theta )+\theta ^2\cos \theta -\theta ^2\cos (3\theta )\right) \,\hbox {d}\theta \end{aligned}$$
(3.5)

by trigonometric identities. It is easy to verify that

$$\begin{aligned}&\theta \sin \theta =\left( \sin \theta -\theta \cos \theta \right) ';\ \ \ \ \theta \sin (3\theta )=\frac{1}{9}\left( \sin (3\theta )-3\theta \cos (3\theta )\right) ';\\&\theta ^2\cos \theta =\left( \theta ^2\sin \theta +2\theta \cos \theta -2\sin \theta \right) ';\\&\theta ^2\cos (3\theta )=\frac{1}{27}\left( 9\theta ^2\sin (3\theta ) +6\theta \cos (3\theta )-2\sin (3\theta )\right) '. \end{aligned}$$

Thus, the term in (3.5) is equal to

$$\begin{aligned} 2\left( 1+\left( -\frac{1}{9}\right) + \left( \frac{\pi ^2}{4}-2\right) -\frac{1}{27}(-\frac{9\pi ^2}{4}+2)\right) =\frac{2}{3}\pi ^2-\frac{64}{27}. \end{aligned}$$

It follows that

$$\begin{aligned} \int _{-2}^2 \left( \Omega (x) - x\right) ^2 \,\hbox {d}x =\frac{64}{3} - \frac{16}{\pi ^2}\left( \frac{2}{3}\pi ^2-\frac{64}{27}\right) =\frac{32}{3}+\frac{1024}{27\pi ^2}. \end{aligned}$$

This completes the verification. \(\square \)

1.3 Derivation of Density Functions in Theorem 1

In this section, we will derive explicit formulas for the limiting distribution in Theorem 1. For convenience, we rewrite the conclusion as

$$\begin{aligned} \frac{2}{\alpha }\cdot \frac{\lambda _\kappa }{n^2}\rightarrow \nu , \end{aligned}$$

where \(\nu \) is different from \(\mu \) in Theorem 1 by a factor of \(\frac{2}{\alpha }\). We will only evaluate the cases \(m=2, 3\). We first state the conclusions and prove them

Case 1. For \(m=2\), the support of \(\nu \) is \([\frac{1}{2}, 1]\) and the cdf of \(\nu \) is

$$\begin{aligned} F(t) =\sqrt{2t-1} \end{aligned}$$
(3.6)

for \(t\in [\frac{1}{2}, 1]\). Hence the density function is given by

$$\begin{aligned} f(t)= \frac{1}{\sqrt{2t-1}},\ \ t\in \left[ \frac{1}{2}, 1\right] . \end{aligned}$$

Case 2. For \(m=3\), the support of \(\nu \) is \([\frac{1}{3}, 1]\), and the cdf of \(\nu \) is

$$\begin{aligned} F(t) = {\left\{ \begin{array}{ll} \frac{2}{\sqrt{3}} \pi (t-\frac{1}{3}), &{} \text {if } \frac{1}{3} \le t< \frac{1}{2}; \\ \frac{2}{\sqrt{3}} \left( (t-\frac{1}{3}) (\pi - 3\arccos \frac{1}{\sqrt{6t-2}}) + \frac{\sqrt{6}}{2} \sqrt{t-\frac{1}{2}}\, \right) , &{} \text {if } \frac{1}{2} \le t < 1. \end{array}\right. } \end{aligned}$$
(3.7)

By differentiation, we get the density function

$$\begin{aligned} f(t)={\left\{ \begin{array}{ll} \frac{2}{\sqrt{3}} \pi , &{} \text {if } \frac{1}{3} \le t < \frac{1}{2}; \\ \frac{2}{\sqrt{3}} \left( \pi - 3\arccos \frac{1}{\sqrt{6t-2}} \right) , &{} \text {if } \frac{1}{2} \le t \le 1.\\ \end{array}\right. } \end{aligned}$$

The above are the two density functions claimed below the statement of Theorem 1. Now we prove them.

From a comment below Theorem 1, the limiting law of \(\frac{2}{\alpha }\cdot \frac{\lambda _\kappa }{n^2}\) is the same as the distribution of \(\sum _{i=1}^m Y_i^2\), where \((Y_1,\ldots ,Y_m)\) has uniform distribution over the set

$$\begin{aligned} \mathcal {H}:=\left\{ (y_1,\ldots ,y_{m}) \in [0,1]^{m};\, \sum _{i=1}^{m}y_i = 1 \right\} . \end{aligned}$$

By (2.2) the volume of \(\mathcal {H}\) is \(\frac{\sqrt{m}}{(m-1)!}\). Therefore, the cdf of \(\sum _{i=1}^m Y_i^2\) is

$$\begin{aligned} F(t)=P\left( \sum _{i=1}^m Y_i^2 \le t\right) = \frac{(m-1)!}{\sqrt{m}} \cdot \text {volume of } \left\{ \sum _{i=1}^m y_i^2 \le t\right\} \cap \mathcal {H},\ \ t\ge 0. \end{aligned}$$
(3.8)

Denote \(B_m(t):=\{ \sum _{i=1}^m y_i^2 \le t\} \subset \mathbb {R}^m\). Let V(t) be the volume of \(B_m(t) \cap \mathcal {H} \). We start with some facts for any \(m\ge 2\).

First, \(V(t) = 0\) for \(t < \frac{1}{m}\). In fact, if \((y_1, \ldots , y_m)\in B_m(t)\cap \mathcal {H}\), then

$$\begin{aligned} \frac{1}{m}=\frac{(\sum _{i=1}^m y_i)^2}{m} \le \sum _{i=1}^m y_i^2\le t. \end{aligned}$$

Further, for \(t>1\), \(\mathcal {H}\) is inscribed in \(B_m(t)\) and thus \(V(t) = \frac{\sqrt{m}}{(m-1)!}\). Now assume \(1/m \le t \le 1\).

The proof of (3.6). Assume \(m=2\). If \(1/2 \le t \le 1\), then \(\{(y_1,y_2) \in [0,1]^2: y_1 + y_2 =1 \}\cap \{ y_1^2 + y_2^2 \le t \}\) is a line segment. Easily, the endpoints of the line segment are

$$\begin{aligned} \left( \frac{1+\sqrt{2t-1}}{2}, \frac{1-\sqrt{2t-1}}{2}\right) \quad \text {and} \quad \left( \frac{1-\sqrt{2t-1}}{2}, \frac{1+\sqrt{2t-1}}{2}\right) , \end{aligned}$$

respectively. Thus \(V(t) = \sqrt{2(2t-1)}.\) Therefore the conclusion follows directly from (3.8).

The proof of (3.7). We first observe that as t increases from \(\frac{1}{3}\) to 1, the intersection \(B_{3}(t)\cap \mathcal {H}\) expands and passes through \(\mathcal {H}\) as t exceeds some critical value \(t_0\); see Fig. 6.

We claim that \(t_0 = \frac{1}{2}\). Indeed, the center C of the intersection of \(B_{3}(t)\) and the hyperplane \(\mathcal {I}:=\{(y_1, y_2, y_3)\in \mathbb {R}^3; y_1+y_2+y_3=1\} \supset \mathcal {H}\) is \(C=(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).\) Thus, the distance from the origin to \(\mathcal {I}\) is \(d=((\frac{1}{3})^2+(\frac{1}{3})^2+(\frac{1}{3})^2)^{1/2} = \frac{1}{\sqrt{3}}.\) By Pythagorean’s theorem, the radius of the intersection (disc) on \(\mathcal {I}\) is

$$\begin{aligned} R(t) = \sqrt{t - d^2} = \sqrt{t - \frac{1}{3}}. \end{aligned}$$

Let \(t_0\) be the value such that the intersection \(B_3(t)\cap \mathcal {H}\) exactly inscribes \(\mathcal {H}\). By symmetry, the intersection point at the (xy)-plane is \(M = (\frac{1}{2},\frac{1}{2}, 0)\); see Fig. 6b. Therefore \(|CM| = \sqrt{\frac{1}{6}}.\) Solving \(t_0\) from \(|CM| = R(t_0),\) we have \(t_0 = \frac{1}{2}\).

Fig. 6
figure 6

Shaded region indicates volume V(t) of intersection as t changes from 1/3 to 1 as \(m=3\)

When \(\frac{1}{3} \le t < \frac{1}{2}\), the intersection locates entirely in \(\mathcal {H}\); see Fig. 6a. Then

$$\begin{aligned} V(t) = \pi R(t)^2 = \pi \left( t - \frac{1}{3}\right) . \end{aligned}$$

When \(\frac{1}{2} \le t \le 1\), the volume of the intersection part (see Fig. 6c) is given by

$$\begin{aligned} V(t) = \pi R(t)^2 - 3 \cdot V_{\text {cs}}(h(t),R(t)), \end{aligned}$$

where \(V_{\text {cs}}(h(t),R(t))\) is the area of circular segment with radius R(t) and height

$$\begin{aligned} h(t)=R(t)- |CM|= \sqrt{t-\frac{1}{3}}-\sqrt{\frac{1}{6}}. \end{aligned}$$

Therefore, it is easy to check

$$\begin{aligned} V(t)= \pi \left( t - \frac{1}{3}\right) - 3\left( t - \frac{1}{3}\right) \arccos \frac{1}{\sqrt{6t-2}} + 3 \sqrt{\frac{1}{6}\left( t-\frac{1}{2}\right) }\,. \end{aligned}$$

This and (3.8) yield the desired conclusion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Wang, K. Statistical Properties of Eigenvalues of Laplace–Beltrami Operators. J Theor Probab 34, 1061–1109 (2021). https://doi.org/10.1007/s10959-020-01061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01061-6

Keywords

Mathematics Subject Classification (2020)

Navigation