Skip to main content
Log in

ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, ε-optimality conditions are given for a nonconvex programming problem which has an infinite number of constraints. The objective function and the constraint functions are supposed to be locally Lipschitz on a Banach space. In a first part, we introduce the concept of regular ε-solution and propose a generalization of the Karush-Kuhn-Tucker conditions. These conditions are up to ε and are obtained by weakening the classical complementarity conditions. Furthermore, they are satisfied without assuming any constraint qualification. Then, we prove that these conditions are also sufficient for ε-optimality when the constraints are convex and the objective function is ε-semiconvex. In a second part, we define quasisaddlepoints associated with an ε-Lagrangian functional and we investigate their relationships with the generalized KKT conditions. In particular, we formulate a Wolfe-type dual problem which allows us to present ε-duality theorems and relationships between the KKT conditions and regular ε-solutions for the dual. Finally, we apply these results to two important infinite programming problems: the cone-constrained convex problem and the semidefinite programming problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MATH  Google Scholar 

  2. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    MATH  Google Scholar 

  3. Goberna, M., López, M.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  4. Polak, E.: Optimization. Algorithms and Consistent Approximations. Applied Mathematical Sciences. Springer, New York (1997)

    MATH  Google Scholar 

  5. Stein, O., Still, G.: On optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory Appl. 104, 443–458 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142, 444–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Stein, G.: Solving generalized semi-infinite programs by reduction to simpler problems. Optimization 53, 19–38 (2004)

    Article  MathSciNet  Google Scholar 

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  9. Bihain, A.: Optimization of upper semidifferentiable functions. J. Optim. Theory Appl. 44, 545–568 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. A Series of Comprehensive Studies in Mathematics. Springer, New York (1993)

    Google Scholar 

  11. Zheng, X.Y., Yang, X.: Lagrange multipliers in nonsmooth semi-infinite optimization problems. Math. Oper. Res. 32, 168–181 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dinh, N., Goberna, M.A., López, M.A.: From linear to convex systems: consistency, Farkas lemma and applications. J. Convex Anal. 13, 113–133 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Farkas-type constraint qualifications in convex infinite programming. ESAIM: Control Optim. Calc. Var. 13, 580–597 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goberna, M., Jeyakumar, V., López, M.: Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities, Nonlinear Anal. 68, 1184–1194 (2008). doi:10.1016/j.na.2006.12.014.

    Article  MATH  MathSciNet  Google Scholar 

  15. Son, T.Q., Dinh, N.: Characterizations of optimal solution sets of convex infinite programs. TOP (2008). doi:10.1007/s11750-008-0039-2.

    MathSciNet  Google Scholar 

  16. Jeyakumar, V., Dinh, N., Lee, G.M.: A new closed cone constraint qualification for convex optimization. Applied Mathematical Report AMR04/8, University of New South Wales, Sidney, Australia (2004)

  17. Dutta, J.: Necessary optimality conditions and saddle points for approximate optimization in Banach spaces. TOP 13, 127–143 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hamel, A.: An ε-Lagrange multiplier rule for a mathematical programming problem on Banach spaces. Optimization 49, 137–149 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Loridan, P.: Necessary conditions for ε-optimality. Math. Program. Study 19, 140–152 (1982)

    MathSciNet  Google Scholar 

  20. Scovel, C., Hush, D., Steinwart, I.: Approximate duality. Technical Report La-UR-05-6755, Los Alamos National Laboratory, September 2005

  21. Strodiot, J.J., Nguyen, V.H., Heukemes, N.: ε-Optimal solutions in nondifferentiable convex programming and some related questions. Math. Program. 25, 307–328 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yokoyama, K.: ε-Optimality criteria for convex programming problems via exact penalty functions. Math. Program. 56, 233–243 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Clarke, F.H.: Generalized gradients of Lipschitz functionals. Adv. Math. 40, 52–67 (1981)

    Article  MATH  Google Scholar 

  26. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  27. Valadier, M.: Contribution à l’analyse convexe. Thèse de Doctorat d’Etat, Université de Montpellier, France (1970)

  28. Hiriart-Urruty, J.B.: On optimality conditions in nondifferentiable programming. Math. Program. 14, 73–86 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, J.C.: ε-Duality theorem of nondifferentiable nonconvex multiobjective programming. J. Optim. Theory Appl. 69, 153–167 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dinh, N., Jeyakumar, V., Lee, G.M.: Sequential Lagrangian conditions for convex programs with applications to semidefinite programming. J. Optim. Theory Appl. 125, 85–112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jeyakumar, V., Lee, G.M., Dinh, N.: New sequence Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14, 534–547 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jeyakumar, V., Wolkowicz, H.: Generalization of Slater’s constraint qualification for infinite convex programs. Math. Program. 57, 85–101 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Strodiot.

Additional information

Communicated by J.P. Crouzeix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, T.Q., Strodiot, J.J. & Nguyen, V.H. ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints. J Optim Theory Appl 141, 389–409 (2009). https://doi.org/10.1007/s10957-008-9475-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9475-2

Keywords

Navigation