Skip to main content
Log in

The Least Singular Value of the General Deformed Ginibre Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the least singular value of the \(n\times n\) matrix \(H-z\) with \(H=A_0+H_0\), where \(H_0\) is drawn from the complex Ginibre ensemble of matrices with iid Gaussian entries, and \(A_0\) is some general \(n\times n\) matrix with complex entries (it can be random and in this case it is independent of \(H_0\)). Assuming some rather general assumptions on \(A_0\), we prove an optimal tail estimate on the least singular value in the regime where z is around the spectral edge of H thus generalize the recent result of Cipolloni et al. (Probab Math Phys 1(1):101–146, 2020) to the case \(A_0\ne 0\). The result improves the classical bound by Sankar et al. (SIAM J Matrix Anal Appl 28:446–476, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alt, J., Erdős, L., Kruger, T.: Spectral radius of random matrices with independent entries. Probab. Math. Phys. 2(2), 221–280 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z., Silverstein, J. W.: No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices. Random Matrices Theory Appl. 1, 1150004 (2012)

  3. Bao, J., Erdős, L.: Delocalization for a class of random block band matrices. Probab. Theory Relat. Fields 167, 673–776 (2017)

    Article  MathSciNet  Google Scholar 

  4. Ben Arous, G., Péché, S.: Universality of local eigenvalue statistics for some sample covariance matrices. Commun. Pure Appl. Math. 58, 1316–1357 (2005)

    Article  MathSciNet  Google Scholar 

  5. Berezin, F.A.: Introduction to the Algebra and Analysis of Anticommuting Variables. Moscow State University Publ, Moscow (1983). (Russian)

  6. Bordenave, C., Capitaine, M.: Outlier eigenvalues for deformed i.i.d. random matrices. Comm. Pure Appl. Math. 69(11), 2131–2194 (2016)

    Article  MathSciNet  Google Scholar 

  7. Brézin, E., Hikami, S.: Level spacing of random matrices in an external source. Phys. Rev. E 58(3), 7176–7185 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cipolloni, G., Erdős, L., Schröder, D.: Optimal lower bound on the least singular value of the shifted Ginibre ensemble. Probab. Math. Phys. 1(1), 101–146 (2020)

    Article  MathSciNet  Google Scholar 

  9. Cipolloni, G., Erdős, L., Schröder, D.: Edge universality for non-Hermitian random matrices. Prob. Theory Relat. Fields 179, 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  10. Cipolloni, G., Erdős, L., Schröder, D.: Central limit theorem for linear eigenvalue statistics of non-hermitian random matrices. Commun. Pure Appl. Math. (2022). https://doi.org/10.1002/cpa.22028

  11. Cipolloni, G., Erdős, L., Schröder, D.: On the condition number of the shifted real Ginibre ensemble. arXiv: 2105.13719

  12. Cipolloni, G., Erdős, L., Schröder, D.: Density of small singular values of the shifted real Ginibre ensemble, arXiv: 2105.13720

  13. Cook, N.: Lower bounds for the smallest singular value of structured random matrices. Ann. Probab. 46, 3442–3500 (2018)

    Article  MathSciNet  Google Scholar 

  14. Dozier, R.B., Silverstein, J.W.: On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98, 678–694 (2007)

    Article  MathSciNet  Google Scholar 

  15. Disertori, M., Lager, M.: Density of states for random band matrices in two dimensions. Ann. Henri Poincare 18(7), 2367–2413 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Disertori, M., Pinson, H., Spencer, T.: Density of states for random band matrices. Commun. Math. Phys. 232, 83–124 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9, 543–560 (1988)

    Article  MathSciNet  Google Scholar 

  18. Efetov, K.: Supersymmetry in Disorder and Chaos. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  19. Fyodorov, Y.V.: On statistics of bi-orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry. Commun. Math. Phys. 363, 579–603 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Littelmann, P., Sommers, H.-J., Zirnbauer, M.R.: Superbosonization of invariant random matrix ensembles. Commun. Math. Phys. 283, 343–395 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Mirlin, A.D.: Statistics of energy levels. New Directions in Quantum Chaos. In: Casati, G., Guarneri, I., Smilansky, U. (eds.) Proceedings of the International School of Physics “Enrico Fermi", Course CXLIII, pp. 223–298. IOS Press, Amsterdam (2000)

  22. Rudelson, M., Vershynin, R.: The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 218, 600–633 (2008)

    Article  MathSciNet  Google Scholar 

  23. Sankar, A., Spielman, D.A., Teng, S.-H.: Smoothed analysis of the condition numbers and growth factors of matrices. SIAM J. Matrix Anal. Appl. 28, 446–476 (2006)

    Article  MathSciNet  Google Scholar 

  24. Shcherbina, M., Shcherbina, T.: Transfer matrix approach to 1d random band matrices: density of states. J. Stat. Phys. 164, 1233–1260 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shcherbina, M., Shcherbina, T.: Characteristic polynomials for 1d random band matrices from the localization side. Commun. Math. Phys. 351, 1009–1044 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Shcherbina, M., Shcherbina, T.: Universality for 1d random band matrices: sigma-model approximation. J. Stat. Phys. 172, 627–664 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Shcherbina, M., Shcherbina, T.: Universality for 1 d random band matrices. Commun. Math. Phys. 385, 667–716 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Shcherbina, T.: Universality of the local regime for the block band matrices with a finite number of blocks. J. Stat. Phys. 155(3), 466–499 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. Shcherbina, T.: On the second mixed moment of the characteristic polynomials of the 1D band matrices. Commun. Math. Phys. 328, 45–82 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Shcherbina, T.: Transfer matrix approach for the real symmetric 1D random band matrices. Electron. J. Probab. 27, 1–29 (2022)

    Article  MathSciNet  Google Scholar 

  31. Tao, T., Vu, V.: Random matrices: the distribution of the smallest singular values. Geom. Funct. Anal. 20, 260–297 (2010)

    Article  MathSciNet  Google Scholar 

  32. Tao, T., Vu, V.: Smooth analysis of the condition number and the least singular value. Math. Comput. 79, 2333–2352 (2010)

    Article  MathSciNet  Google Scholar 

  33. Tao, T., Vu, V.: The condition number of a randomly perturbed matrix. In: STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 248–255. ACM, New York (2007)

  34. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non- Hermitian matrices. Ann. Probab. 43, 782–874 (2015)

    Article  MathSciNet  Google Scholar 

  35. Tao, T., Vu, V., Krishnapur, M., Random matrices: Universality of ESDs and the circular law. Ann. Probab. 38(5), 2023 (2010)

  36. Tikhomirov, K.: Invertibility via distance for non-centered random matrices with continuous distributions. Random Struct. Algorithms 57, 526–562 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Shcherbina.

Ethics declarations

Authors Participated

The paper is based upon work supported in part by the NSF grant DMS-1928930 while the authors participated in a program “Universality and Integrability in Random Matrix Theory and Interacting Particle Systems” hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2021 semester.

Additional information

Communicated by Paul Bourgade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 3.1

Let us introduce the averaging (see (3.26))

$$\begin{aligned}&\langle f\rangle =\frac{4}{\pi ^2}\Re \Big [e^{i\pi /4}\int _0^\infty f({\tilde{u}},\theta ) p({\tilde{u}},{\tilde{\tau }})e^{{\tilde{F}}_1({\tilde{u}})}d{\tilde{u}} \int _{0}^\infty e^{{\tilde{F}}_2({\tilde{\tau }})}d{\tilde{\tau }}\int _{-\infty }^\infty e^{-{\tilde{\varepsilon }}{\tilde{v}}^2}d{\tilde{v}}\\&\quad \int _{0}^{2\pi }e^{-2{\tilde{\varepsilon }}({\tilde{u}}_*+{\tilde{u}}) (\cos \theta +1) }d\theta \Big ]\\&{\tilde{F}}_1({\tilde{u}})=-c_2{\tilde{u}}^4/2-a_2{\tilde{u}}^2-a_3{\tilde{u}}^3\\&{\tilde{F}}_2({\tilde{\tau }})= -c_2{\tilde{\tau }}^4/2-ia_2{\tilde{\tau }}^2-ia_3e^{ i\pi /4}{\tilde{\tau }}^3\\&p({\tilde{u}},{\tilde{\tau }}):=({\tilde{u}}+{\tilde{u}}_*) ({\tilde{u}}_*-ie^{ i\pi /4}{\tilde{\tau }})\frac{{\tilde{\varphi }}({\tilde{u}},e^{ i\pi /4}{\tilde{\tau }})}{({\tilde{v}}^2+4{\tilde{u}}_*-4ie^{ i\pi /4}{\tilde{\tau }})^{1/2}}, \end{aligned}$$

where \({\tilde{\varphi }}\) and \(a_{2}\) and \(a_3\) are defined in (3.24). Then by construction

$$\begin{aligned} 1=&{\mathcal {Z}}(\varepsilon ,\varepsilon )=\left\langle 1\right\rangle +O(n^{-1/2}). \end{aligned}$$
(5.1)

Moreover, evidently,

$$\begin{aligned} I({\tilde{\delta }},{\tilde{\varepsilon }})=-{\tilde{\varepsilon }}^{-1}\langle ({\tilde{u}}+{\tilde{u}}_*)\cos \theta \rangle =-\frac{{\tilde{u}}_*}{{\tilde{\varepsilon }}}\langle \cos \theta \rangle -\frac{1}{{\tilde{\varepsilon }}}\langle {\tilde{u}}\cos \theta \rangle . \end{aligned}$$
(5.2)

Equation (3.25), as \(\varepsilon \rightarrow \infty \), yields:

$$\begin{aligned} {\tilde{u}}_*({\tilde{\delta }},{\tilde{\varepsilon }})=&({\tilde{\varepsilon }}/c_2)^{1/3}(1+o(1))\rightarrow \infty , \quad a_2=3c_2{\tilde{u}}_*^2(1+o(1))\rightarrow \infty ,\quad a_3=2c_2{\tilde{u}}_*\rightarrow \infty . \end{aligned}$$

Since \(a_2\rightarrow \infty \) and

$$\begin{aligned} \max {\tilde{F}}_1({\tilde{u}})={\tilde{F}}_1(0)=0,\quad \max \{-(\cos \theta +1)\}=0,\quad \max \{-{\tilde{v}}^2\}=0,\end{aligned}$$

one can use a standard saddle point method for integration with respect to \({\tilde{u}}\), \(\theta \) and \({\tilde{v}}\). To integrate with respect to \({\tilde{\tau }}\) we move the contour of integration from \({\mathbb {R}}_+\) to \(e^{-i\pi /8}{\mathbb {R}}_+\). Then

$$\begin{aligned}\max \Re {\tilde{F}}_2(e^{-i\pi /8}{\tilde{\tau }} )=\max \Re (-a_2e^{i\pi /4}{\tilde{\tau }}^2- a_3e^{3i\pi /8}{\tilde{\tau }}^3)={\tilde{F}}_2(0)=0,\end{aligned}$$

and we can apply the saddle point method for the integral with respect to \({\tilde{\tau }}\) also. We restrict the integration domain to

$$\begin{aligned} |{\tilde{u}}|\le {\tilde{u}}_*^{-1}\log {\tilde{u}}_*,\quad |{\tilde{\tau }}|\le {\tilde{u}}_*^{-1}\log {\tilde{u}}_*,\quad |v|\le {\tilde{\varepsilon }}^{-1/2}\log {\tilde{\varepsilon }} \quad |\theta -\pi |\le ({\tilde{\varepsilon }}{\tilde{u}}_*)^{-1/2}\log ({\tilde{\varepsilon }}{\tilde{u}}_*) \end{aligned}$$

and change the variables

$$\begin{aligned} {\tilde{u}}=&u'/{\tilde{u}}_*,\quad {\tilde{\tau }}= e^{-i\pi /8}\tau '/{\tilde{u}}_*,\quad {\tilde{v}}=v'/{\tilde{\varepsilon }}^{1/2},\quad \theta =-\pi +\theta '({\tilde{\varepsilon }}{\tilde{u}}_*)^{-1/2} \end{aligned}$$

Then

$$\begin{aligned}&{\tilde{F}}_1({\tilde{u}})\rightarrow -3c_2(u')^2+O({\tilde{u}}_*^{-1});\nonumber \\&{\tilde{F}}_1({\tilde{\tau }})\rightarrow -3c_2e^{i\pi /4}(\tau ')^2+O({\tilde{u}}_*^{-1});\nonumber \\&\quad -2{\tilde{\varepsilon }}{\tilde{u}}_*(\cos \theta +1)\rightarrow -(\theta ')^2+O(({\tilde{\varepsilon }}{\tilde{u}}_*)^{-1/2});\nonumber \\&p({\tilde{u}},{\tilde{\tau }})\rightarrow 3({\tilde{u}}_*)^6c_2^2/2({\tilde{u}}_*)^{1/2}(1+O({\tilde{u}}_*^{-1/2})), \end{aligned}$$
(5.3)

and substituting this to (5.2) we get

$$\begin{aligned} I({\tilde{\delta }},{\tilde{\varepsilon }})=&\frac{{\tilde{u}}_*}{{\tilde{\varepsilon }}}\langle 1\rangle _0(1+O({\tilde{u}}_*^{-1/2})) +O(\frac{1}{{\tilde{\varepsilon }}{\tilde{u}}_*}) \end{aligned}$$
(5.4)

where we set

$$\begin{aligned} \langle f\rangle _0=&\frac{6c_2^2({\tilde{u}}_*)^3}{\pi ^2{\tilde{\varepsilon }}} \Re \Big [e^{i\pi /8}\int du'd\tau 'd\theta 'dv' f(u',\theta ')e^{-3c_2(u')^2-3c_2e^{i\pi /4}(\tau ')^2-(\theta ')^2-(v')^2}\Big ] \end{aligned}$$

By (5.1) and (5.3) we have

$$\begin{aligned} \langle 1\rangle _0=1+O({\tilde{u}}_*^{-1/2}) \end{aligned}$$

and combining the above relation with (5.4), we obtain (3.27). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbina, M., Shcherbina, T. The Least Singular Value of the General Deformed Ginibre Ensemble. J Stat Phys 189, 30 (2022). https://doi.org/10.1007/s10955-022-02989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02989-1

Navigation