Skip to main content
Log in

Violation of the Second Fluctuation-dissipation Relation and Entropy Production in Nonequilibrium Medium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate a class of nonequilibrium media described by Langevin dynamics that satisfies the local detailed balance. For the effective dynamics of a probe immersed in the medium, we derive an inequality that bounds the violation of the second fluctuation-dissipation relation (FDR). We also discuss the validity of the effective dynamics. In particular, we show that the effective dynamics obtained from nonequilibrium linear response theory is consistent with that obtained from a singular perturbation method. As an example of these results, we propose a simple model for a nonequilibrium medium in which the particles are subjected to potentials that switch stochastically. For this model, we show that the second FDR is recovered in the fast switching limit, although the particles are out of equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability:

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)

    Article  ADS  MATH  Google Scholar 

  2. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics, vol. 31. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Harada, T.: Phenomenological energetics for molecular motors. Europhys. Lett. 70(1), 49 (2005)

    Article  ADS  Google Scholar 

  4. Harada, T., Sasa, Si.: Equality Connecting energy dissipation with a violation of the fluctuation-response relation. Phys. Rev. Lett. 95(13), 130602 (2005)

    Article  ADS  Google Scholar 

  5. Harada, T., Sasa, Si.: Energy dissipation and violation of the fluctuation-response relation in nonequilibrium Langevin systems. Phys. Rev. E 73(2), 026131 (2006)

    Article  ADS  Google Scholar 

  6. Harada, T., Sasa, Si.: Fluctuations, responses and energetics of molecular motors. Math. Biosci. 207(2), 365–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cugliandolo, L.F., Dean, D.S., Kurchan, J.: Fluctuation-dissipation theorems and entropy production in relaxational systems. Phys. Rev. Lett. 79(12), 2168 (1997)

    Article  ADS  Google Scholar 

  8. Toyabe, S., Muneyuki, E.: Single molecule thermodynamics of ATP synthesis by F1-ATPase. New J. Phys. 17(1), 015008 (2015)

    Article  ADS  Google Scholar 

  9. Ariga, T., Tomishige, M., Mizuno, D.: Nonequilibrium energetics of molecular motor kinesin. Phys. Rev. Lett. 121(21), 218101 (2018)

    Article  ADS  Google Scholar 

  10. Matsumoto, T., Otsuki, M., Ooshida, T., Goto, S., Nakahara, A.: Response function of turbulence computed via fluctuation-response relation of a Langevin system with vanishing noise. Phys. Rev. E 89(6), 061002 (2014)

    Article  ADS  Google Scholar 

  11. Matsumoto, T., Otsuki, M., Ooshida, T., Goto, S.: Correlation function and linear response function of homogeneous isotropic turbulence in the Eulerian and Lagrangian coordinates. J. Fluid Mech. 919, A9 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Maes, C.: On the Second Fluctuation-Dissipation Theorem for Nonequilibrium Baths. J. Stat. Phys. 154(3), 705–722 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hayashi, K., Sasa, Si.: Linear response theory in stochastic many-body systems revisited. Physica A 370(2), 407–429 (2006)

    Article  ADS  Google Scholar 

  14. Maes, C., Safaverdi, S., Visco, P., Van Wijland, F.: Fluctuation-response relations for nonequilibrium diffusions with memory. Phys. Rev. E 87(2), 022125 (2013)

    Article  ADS  Google Scholar 

  15. Maes, C.: Response theory: a trajectory-based approach. Front. Phys. 8, 229 (2020)

    Article  Google Scholar 

  16. Maes, C.: Local detailed balance. SciPost Phys. p. 32 (2021)

  17. Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C.: Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810), 370–373 (2007)

    Article  ADS  Google Scholar 

  18. Nishizawa, K., Bremerich, M., Ayade, H., Schmidt, C.F., Ariga, T., Mizuno, D.: Feedback-tracking microrheology in living cells. Sci. Adv. 3(9), e1700318 (2017)

    Article  ADS  Google Scholar 

  19. Jee, A.Y., Cho, Y.K., Granick, S., Tlusty, T.: Catalytic enzymes are active matter. Proc. Natl. Acad. Sci. U.S.A. 115(46), E10812–E10821 (2018)

    Article  ADS  Google Scholar 

  20. Ross, J.L.: The dark matter of biology. Biophys. J. 111(5), 909–916 (2016)

    Article  ADS  Google Scholar 

  21. Ariga, T., Tateishi, K., Tomishige, M., Mizuno, D.: Noise-induced acceleration of single molecule kinesin-1. Phys. Rev. Lett. 127(17), 178101 (2021)

    Article  ADS  Google Scholar 

  22. Hayashi, K., Sasa, Si.: The law of action and reaction for the effective force in a non-equilibrium colloidal system. J. Phys. 18(10), 2825 (2006)

    Google Scholar 

  23. Maes, C., Steffenoni, S.: Friction and noise for a probe in a nonequilibrium fluid. Phys. Rev. E 91(2), 022128 (2015)

    Article  ADS  Google Scholar 

  24. Haga, T.: Nonequilibrium Langevin equation and effective temperature for particle interacting with spatially extended environment. J. Stat. Phys. 159(3), 713–729 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Steffenoni, S., Kroy, K., Falasco, G.: Interacting Brownian dynamics in a nonequilibrium particle bath. Phys. Rev. E 94(6), 062139 (2016)

    Article  ADS  Google Scholar 

  26. Maes, C., Thiery, T.: The induced motion of a probe coupled to a bath with random resettings. J. Phys. A 50(41), 415001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and Response of Nonequilibrium States. Phys. Rev. Lett. 103(1), 010602 (2009)

    Article  ADS  MATH  Google Scholar 

  28. Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for markov dynamics, I: jump processes and overdamped diffusions. J. Stat. Phys. 137(5), 1094–1116 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Baiesi, M., Maes, C.: An update on the nonequilibrium linear response. New J. Phys. 15(1), 013004 (2013)

    Article  ADS  MATH  Google Scholar 

  30. Maes, C.: Fluctuating motion in an active environment. Phys. Rev. Lett. 125(20), 208001 (2020)

    Article  ADS  Google Scholar 

  31. Toyabe, S., Jiang, H.R., Nakamura, T., Murayama, Y., Sano, M.: Experimental test of a new equality: measuring heat dissipation in an optically driven colloidal system. Phys. Rev. E 75(1), 011122 (2007)

    Article  ADS  Google Scholar 

  32. Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M., Seifert, U., Ritort, F.: Single-molecule measurement of the effective temperature in non-equilibrium steady states. Nat. Phys. 11(11), 971–977 (2015)

    Article  Google Scholar 

  33. Wang, S.W., Kawaguchi, K., Sasa, Si., Tang, L.H.: Entropy production of nanosystems with time scale separation. Phys. Rev. Lett. 117(7), 070601 (2016)

    Article  ADS  Google Scholar 

  34. Celani, A., Bo, S., Eichhorn, R., Aurell, E.: Anomalous thermodynamics at the microscale. Phys. Rev. Lett. 109(26), 260603 (2012)

    Article  ADS  Google Scholar 

  35. Kawaguchi, K., Nakayama, Y.: Fluctuation theorem for hidden entropy production. Phys. Rev. E 88(2), 022147 (2013)

    Article  ADS  Google Scholar 

  36. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)

    Article  ADS  Google Scholar 

  37. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  38. Girsanov, I.V.: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5(3), 285–301 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gardiner, C.W.: Handbook of Stochastic Methods, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  40. Maes, C.: Frenesy: time-symmetric dynamical activity in nonequilibria. Phys. Rep. 850, 1–33 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  42. Seifert, U., Speck, T.: Fluctuation-dissipation theorem in nonequilibrium steady states. Europhys. Lett. 89(1), 10007 (2010)

    Article  ADS  Google Scholar 

  43. Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95(4), 040602 (2005)

    Article  ADS  Google Scholar 

  44. Sekimoto, K.: Stochastic Energetics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  45. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  ADS  Google Scholar 

  46. Zwanzig, R., Nordholm, K., Mitchell, W.: Memory effects in irreversible thermodynamics: corrected derivation of transport equations. Phys. Rev. A 5(6), 2680 (1972)

    Article  ADS  Google Scholar 

  47. Sture, K., Nordholm, J., Zwanzig, R.: Strategies for fluctuation renormalization in nonlinear transport theory. J. Stat. Phys. 11(2), 143–158 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  48. Mori, H., Fujisaka, H.: On nonlinear dynamics of fluctuations. Prog. Theor. Phys. 49(3), 764–775 (1973)

    Article  ADS  Google Scholar 

  49. Kawasaki, K.: Simple derivations of generalized linear and nonlinear Langevin equations. J. Phys. A 6(9), 1289 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  50. Fujisaka, H.: Fluctuation renormalization in nonlinear dynamics. Prog. Theor. Phys. 55(2), 430–437 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Granek, O., Kafri, Y., Tailleur, J.: The Anomalous Transport of Tracers in Active Baths. arXiv preprint arXiv:2108.11970 (2021)

  52. Alder, B.J., Wainwright, T.E.: Decay of the velocity autocorrelation function. Phys. Rev. A 1(1), 18 (1970)

    Article  ADS  Google Scholar 

  53. Pomeau, Y., Resibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19(2), 63–139 (1975)

    Article  ADS  Google Scholar 

  54. Huang, R., Chavez, I., Taute, K.M., Lukić, B., Jeney, S., Raizen, M.G., Florin, E.L.: Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7(7), 576–580 (2011)

    Article  Google Scholar 

  55. Franosch, T., Grimm, M., Belushkin, M., Mor, F.M., Foffi, G., Forró, L., Jeney, S.: Resonances arising from hydrodynamic memory in Brownian motion. Nature 478(7367), 85–88 (2011)

    Article  ADS  Google Scholar 

  56. Kheifets, S., Simha, A., Melin, K., Li, T., Raizen, M.G.: Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343(6178), 1493–1496 (2014)

    Article  ADS  Google Scholar 

  57. Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124(4), 983 (1961)

    Article  ADS  MATH  Google Scholar 

  58. Saito, K., Hongo, M., Dhar, A., Sasa, Si.: Microscopic theory of fluctuating hydrodynamics in nonlinear lattices. Phys. Rev. Lett. 127(1), 010601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  59. D’Alessio, L., Kafri, Y., Polkovnikov, A.: Negative mass corrections in a dissipative stochastic environment. J. Stat. Mech. 2016(2), 023105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Weinberg, P., Bukov, M., D’Alessio, L., Polkovnikov, A., Vajna, S., Kolodrubetz, M.: Adiabatic perturbation theory and geometry of periodically-driven systems. Phys. Rep. 688, 1–35 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Feng, M., Hou, Z.: Effective dynamics of tracer in active bath: A mean-field theory study. arXiv preprint arXiv:2110.00279 (2021)

  62. Nakayama, Y., Kawaguchi, K., Nakagawa, N.: Unattainability of Carnot efficiency in thermal motors: coarse graining and entropy production of Feynman-Smoluchowski ratchets. Phys. Rev. E 98(2), 022102 (2018)

    Article  ADS  Google Scholar 

  63. Tailleur, J., Cates, M.E.: Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100(21), 218103 (2008)

    Article  ADS  Google Scholar 

  64. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, Hoboken, NJ (2006)

    MATH  Google Scholar 

  65. Martin, D., O’Byrne, J., Cates, M.E., Fodor, É., Nardini, C., Tailleur, J., van Wijland, F.: Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys. Rev. E 103(3), 032607 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Ken Hiura for helpful discussions on the singular perturbation method. The author also thanks Shin-ichi Sasa for valuable comments throughout the manuscript. The present study was supported by JSPS KAKENHI Grant No. 20J20079, a Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Tanogami.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of the Effective Dynamics for the Potential Switching Medium

Excess Action

We first confirm that, to first order in \(X_s-X_t\), the excess action \({\mathcal {A}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X]))\) is given by

$$\begin{aligned} -{\mathcal {A}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X]) \simeq \dfrac{1}{2k_{\mathrm {B}}T}&\left[ \int ^t_{-\infty }ds(X_s-X_t) \sum _j\dfrac{\partial }{\partial x^j_s}\varPhi ({{\varvec{x}}}_s,X_t)\circ {\dot{x}}^j_s\right. \nonumber \\&\quad \left. -\int ^t_{-\infty }ds(X_s-X_t){\mathcal {L}}^\dagger _s\varPhi ({{\varvec{x}}}_s,X_t)\right] \end{aligned}$$
(A.1)

with the backward operator for the dynamics (80) with \(X_t\) held fixed:

$$\begin{aligned} {\mathcal {L}}^\dagger _s:=\sum _j\left[ \dfrac{1}{\gamma }(-\kappa _b (x^j_s-\sigma ^j_sL)-\lambda \kappa _c(x^j_s-X_t))\dfrac{\partial }{\partial x^j_s}+\dfrac{k_{\mathrm {B}}T}{\gamma }\dfrac{\partial ^2}{\partial (x^j_s)^2}\right] . \end{aligned}$$
(A.2)

To this end, we calculate \({\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X])\) and \({\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|X_t)\). We first consider a trajectory in the time interval [0, t] and discretized time \(t_n=n\varDelta t\in [0,t]\) (\(n=0,1,\cdots ,M\)) with \(t\equiv M\varDelta t\). Correspondingly, let \([{{\varvec{x}}},{{\varvec{\sigma }}}]:=\{({{\varvec{x}}}_0,{{\varvec{\sigma }}}_0),({{\varvec{x}}}_1,{{\varvec{\sigma }}}_1),\cdots ,({{\varvec{x}}}_M,{{\varvec{\sigma }}}_M)\}\) be the discretized trajectory, where \(({{\varvec{x}}}_n,{{\varvec{\sigma }}}_n):=({{\varvec{x}}}_{t_n},{{\varvec{\sigma }}}_{t_n})\). Suppose that the state \(\sigma ^j\) is switched at time intervals with \(n=n^j_1,n^j_2,\cdots ,n^j_{k_j}\in \{0,1,\cdots ,M\}\) as

$$\begin{aligned} \sigma ^j_{n^j_\ell +1}=1-\sigma ^j_{n^j_\ell }. \end{aligned}$$
(A.3)

We denote by \(\varSigma ^j_\ell \in \{0,1\}\) the value of \(\sigma ^j_n\) for \(n^j_\ell <n\le n^j_{\ell +1}\) with \(n^j_0:=-1\) and \(n^j_{k_j+1}:=M\). For notational simplicity, we rewrite (80) as

$$\begin{aligned} \gamma {\dot{x}}^j_s&=-U'_1(x^j_s,\sigma ^j_s)-\lambda V'_1(x^j_s,X_s) +\sqrt{2\gamma k_{\mathrm {B}}T}\xi ^j_s\nonumber \\&=-U'_1(x^j_s,\sigma ^j_s)-\lambda V'_1(x^j_s,X_t)+h_sf(x^j_s)+\sqrt{2\gamma k_{\mathrm {B}}T}\xi ^j_s, \end{aligned}$$
(A.4)

where \(U_1(x^j,\sigma ^j):=\kappa _b(x^j-\sigma ^jL)^2/2\), \(V_1(x^j,X):=\kappa _c(x^j-X)^2/2\), and the prime denotes the derivative with respect to \(x^j_t\). In the second line, we have introduced a time-dependent amplitude \(h_s:=X_s-X_t\) and \(f(x^j_s):=\partial _j\varPhi ({{\varvec{x}}}_s,X_t)=\lambda \kappa _c\) to explicitly represent the deviation from the dynamics with \(X_t\) held fixed. Then, the probability density of a trajectory \({\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X])\) starting from \(({{\varvec{x}}}_0,{{\varvec{\sigma }}}_0)\) reads [6]

$$\begin{aligned}&{\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X])\nonumber \\&=\prod _j\prod ^{n^j_1-1}_{n=0}\sqrt{\dfrac{\gamma }{4\pi k_{\mathrm {B}}T \varDelta t}}\nonumber \\&\quad e^{-\frac{\varDelta t}{4\gamma k_{\mathrm {B}}T} \left[ \gamma \frac{x^j_{n+1}-x^j_n}{\varDelta t}+U'_1({\bar{x}}^j_n,\varSigma ^j_0) +\lambda V'_1({\bar{x}}^j_n,X_t)-{\bar{h}}_nf({\bar{x}}^j_n)\right] ^2 +\frac{\varDelta t}{2\gamma }\left[ U''_1({\bar{x}}^j_n,\varSigma ^j_0) +\lambda V''_1({\bar{x}}^j_n,X_t)-{\bar{h}}_nf'({\bar{x}}^j_n)\right] -r\varDelta t} \nonumber \\&\times \prod ^{k_j}_{\ell =1}r\varDelta t\delta (x^j_{n^j_\ell +1}-x^j_{n^j_\ell })\nonumber \\&\times \prod ^{n^j_{\ell +1}-1}_{n=n^j_\ell +1}\sqrt{\dfrac{\gamma }{4\pi k_{\mathrm {B}}T\varDelta t}}\nonumber \\&\quad e^{-\frac{\varDelta t}{4\gamma k_{\mathrm {B}}T}\left[ \gamma \frac{x^j_{n+1}-x^j_n}{\varDelta t}+U'_1({\bar{x}}^j_n,\varSigma ^j_\ell )+\lambda V'_1({\bar{x}}^j_n,X_t)-{\bar{h}}_nf({\bar{x}}^j_n)\right] ^2 +\frac{\varDelta t}{2\gamma }\left[ U''_1({\bar{x}}^j_n,\varSigma ^j_\ell )+\lambda V''_1({\bar{x}}^j_n,X_t)-{\bar{h}}_nf'({\bar{x}}^j_n)\right] -r\varDelta t}. \end{aligned}$$
(A.5)

Here, \({\bar{x}}^j_n:=(x^j_{n+1}+x^j_n)/2\) and \({\bar{h}}_n:=(h_{n+1}+h_n)/2\). We note that \({\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|X_t)\) is immediately obtained from (A.5) by setting \({\bar{h}}_n=0\). From these expressions, it follows that

$$\begin{aligned}&\quad \ln \dfrac{\mathcal {{\mathbb {P}}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X])}{{\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|X_t)}=\sum _j\left[ \dfrac{1}{2k_{\mathrm {B}}T}\sum ^{M-1}_{n=0}{\bar{h}}_nf({\bar{x}}^j_n) (x^j_{n+1}-x^j_n) \right. \nonumber \\&\quad \left. -\dfrac{1}{2\gamma k_{\mathrm {B}}T}\left\{ \sum ^{n^j_1-1}_{n=0} {\bar{h}}_nf({\bar{x}}^j_n)[-U'_1({\bar{x}}^j_n,\varSigma ^j_0)-\lambda V'_1 ({\bar{x}}^j_n,X_t)]\varDelta t\right. \right. \nonumber \\&\quad \left. \left. +\sum ^{k_j}_{\ell =1}\sum ^{n^j_{\ell +1}-1}_{n=n^j_\ell +1} {\bar{h}}_nf({\bar{x}}^j_n)[-U'_1({\bar{x}}^j_n,\varSigma ^j_\ell )-\lambda V'_1({\bar{x}}^j_n,X_t)]\varDelta t\right\} \right. \nonumber \\&\quad \left. -\dfrac{1}{2\gamma }\sum ^{M-1}_{n=0}{\bar{h}}_nf'({\bar{x}}^j_n)\varDelta t\right] +O({\bar{h}}^2_n). \end{aligned}$$
(A.6)

By taking the continuum limit and replacing the time interval from [0, t] to \([-\infty ,t]\), we obtain the excess action \({\mathcal {A}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X])\):

$$\begin{aligned} -{\mathcal {A}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|[X])&=\ln \dfrac{{\mathbb {P}}([{{\varvec{x}}}, {{\varvec{\sigma }}}]|[X])}{{\mathbb {P}}([{{\varvec{x}}},{{\varvec{\sigma }}}]|X_t)}=\sum _j\left[ \dfrac{1}{2k_{\mathrm {B}}T}\int ^t_{-\infty }dsh_sf(x^j_s) \circ {\dot{x}}^j_s\right. \nonumber \\&\quad \left. -\dfrac{1}{2\gamma k_{\mathrm {B}}T}\int ^t_{-\infty }dsh_sf(x^j_s) (-U'_1(x^j_s,\sigma ^j_s)-\lambda V'_1(x^j_s,X_t))\right. \nonumber \\&\quad \left. -\dfrac{1}{2\gamma } \int ^t_{-\infty }dsh_s\dfrac{\partial }{\partial x^j_s}f(x^j_s)\right] +O(h^2_s)\nonumber \\&\simeq \dfrac{1}{2k_{\mathrm {B}}T}\left[ \int ^t_{-\infty }dsh_s\sum _j \dfrac{\partial }{\partial x^j_s}\varPhi ({{\varvec{x}}}_s,X_t)\circ {\dot{x}}^j_s-\int ^t_{-\infty }dsh_s{\mathcal {L}}^\dagger _s\varPhi ({{\varvec{x}}}_s,X_t)\right] , \end{aligned}$$
(A.7)

where

$$\begin{aligned} {\mathcal {L}}^\dagger _s:=\sum _j\left[ \dfrac{1}{\gamma }(-U'_1(x^j_s,\sigma ^j_s)-\lambda V'_1(x^j_s,X_t))\dfrac{\partial }{\partial x^j_s}+\dfrac{k_{\mathrm {B}}T}{\gamma }\dfrac{\partial ^2}{\partial (x^j_s)^2}\right] . \end{aligned}$$
(A.8)

1.1 Explicit Calculation of \(G(X_t)\), \(\gamma (t-s)\), and \(\gamma _{\mathrm {ex}}(t-s)\)

Here, we calculate \(G(X_t)\), \(\gamma (t-s)\), and \(\gamma _{\mathrm {ex}}(t-s)\) explicitly. The starting point is the stationary solution of (80) with \(X_t\) held fixed (93):

$$\begin{aligned} x^j_t&=\dfrac{\lambda \kappa _c}{\kappa _b+\lambda \kappa _c}X_t +\dfrac{\kappa _b}{\kappa _b+\lambda \kappa _c}\dfrac{L}{2} +\int ^t_{-\infty }dse^{-\frac{t-s}{\tau _x}}\left[ \dfrac{\kappa _b}{\gamma } \left( \sigma ^j_s-\dfrac{1}{2}\right) L+\sqrt{\dfrac{2k_{\mathrm {B}}T}{\gamma }} \xi ^j_s\right] \nonumber \\&=\langle x^j_t\rangle ^{X_t}+\int ^t_{-\infty }dse^{-\frac{t-s}{\tau _x}} \left[ \dfrac{\kappa _b}{\gamma }\left( \sigma ^j_s-\dfrac{1}{2}\right) L +\sqrt{\dfrac{2k_{\mathrm {B}}T}{\gamma }}\xi ^j_s\right] . \end{aligned}$$
(A.9)

The statistical force is immediately obtained by substituting (A.9) into its definition:

$$\begin{aligned} G(X_t)&:=\langle \varPhi ({{\varvec{x}}}_t,X_t)\rangle ^{X_t}\nonumber \\&=\left\langle -\lambda \kappa _c\sum _j(X_t-x^j_t)\right\rangle ^{X_t}\nonumber \\&=-\dfrac{N\lambda \kappa _c\kappa _b}{\kappa _b+\lambda \kappa _c} \left( X_t-\dfrac{L}{2}\right) . \end{aligned}$$
(A.10)

To calculate the friction kernel, we first calculate the response function \(R_{\varPhi \varPhi }(t-s)\). The response function \(R_{\varPhi \varPhi }(t-s)\) is expressed as

$$\begin{aligned}&R_{\varPhi \varPhi }(t-s)\nonumber \\&=\dfrac{1}{2k_{\mathrm {B}}T}\left[ \dfrac{d}{ds}\langle \varPhi ({{\varvec{x}}}_s,X_t); \varPhi ({{\varvec{x}}}_t,X_t)\rangle ^{X_t}-\langle {\mathcal {L}}^\dagger _s\varPhi ({{\varvec{x}}}_s,X_t); \varPhi ({{\varvec{x}}}_t,X_t)\rangle ^{X_t}\right] \nonumber \\&=\dfrac{\lambda ^2\kappa ^2_c}{2k_{\mathrm {B}}T}\sum _i\sum _j\left[ \dfrac{d}{ds} \langle x^i_s-X_t;x^j_t-X_t\rangle ^{X_t}+\dfrac{\kappa _b}{\gamma }\langle x^i_s -\sigma ^i_sL;x^j_t-X_t\rangle ^{X_t}\right. \nonumber \\&\quad \left. +\dfrac{\lambda \kappa _c}{\gamma }\langle x^i_s -X_t;x^j_t-X_t\rangle ^{X_t}\right] \nonumber \\&=\dfrac{\lambda ^2\kappa ^2_c}{2k_{\mathrm {B}}T}\sum _i\sum _j\left[ \dfrac{d}{ds} \langle x^i_s;x^j_t\rangle ^{X_t}+\dfrac{\kappa _b+\lambda \kappa _c}{\gamma }\langle x^i_s;x^j_t\rangle ^{X_t}-\dfrac{\kappa _b}{\gamma }L\langle \sigma ^i_s;x^j_t\rangle ^{X_t}\right] . \end{aligned}$$
(A.11)

By using (A.9) and the relation

$$\begin{aligned} \langle \sigma ^i_t\sigma ^j_s\rangle = {\left\{ \begin{array}{ll} (1+e^{-2r|t-s|})/4\quad \text {for}\quad i=j\\ 1/4\quad \text {for}\quad i\ne j, \end{array}\right. } \end{aligned}$$

\(\langle x^i_s;x^j_t\rangle ^{X_t}\) and \(\langle \sigma ^i_s;x^j_t\rangle ^{X_t}\) are calculated as

$$\begin{aligned} \langle x^i_s;x^j_t\rangle ^{X_t}&=\delta _{ij}\left[ \dfrac{\kappa ^2_b/\gamma ^2}{(\kappa _b+\lambda \kappa _c)^2/ \gamma ^2-4r^2}\dfrac{L^2}{4}\left( e^{-2r|t-s|}-\dfrac{2r\gamma }{\kappa _b +\lambda \kappa _c}e^{-\frac{\kappa _b+\lambda \kappa _c}{\gamma }|t-s|}\right) \right. \nonumber \\&\quad \left. +\dfrac{k_{\mathrm {B}}T}{\kappa _b+\lambda \kappa _c}e^{-\frac{\kappa _b+\lambda \kappa _c}{\gamma }|t-s|}\right] , \end{aligned}$$
(A.12)
$$\begin{aligned} \langle \sigma ^i_s;x^j_t\rangle ^{X_t}&=\delta _{ij} \left\{ \begin{array}{llll} \dfrac{\kappa _b/\gamma }{(\kappa _b+\lambda \kappa _c)/\gamma +2r} \dfrac{L}{4}e^{-2r|t-s|},\quad \text {for}\quad t<s\\ \dfrac{\kappa _b/\gamma }{(\kappa _b+\lambda \kappa _c)/\gamma -2r} \dfrac{L}{4}\left( e^{-2r|t-s|}-e^{-\frac{\kappa _b+\lambda \kappa _c}{\gamma }|t-s|} \right) \\ +\dfrac{\kappa _b/\gamma }{(\kappa _b+\lambda \kappa _c)/\gamma +2r}\dfrac{L}{4} e^{-\frac{\kappa _b+\lambda \kappa _c}{\gamma }|t-s|},\quad \text {for}\quad t\ge s. \end{array}\right. \end{aligned}$$
(A.13)

Therefore, for \(t\ge s\), the response function is

$$\begin{aligned} R_{\varPhi \varPhi }(t-s)=\dfrac{N\lambda ^2\kappa ^2_c}{\gamma }e^{-\frac{\kappa _b +\lambda \kappa _c}{\gamma }(t-s)}. \end{aligned}$$
(A.14)

From this result, it follows that

$$\begin{aligned} \gamma (t-s)&:=\int ^s_{-\infty }du R_{\varPhi \varPhi }(t-u)\nonumber \\&=\dfrac{N\lambda ^2\kappa ^2_c}{\kappa _b+\lambda \kappa _c}e^{-\frac{\kappa _b +\lambda \kappa _c}{\gamma }(t-s)},\quad \text {for}\quad t\ge s. \end{aligned}$$
(A.15)

To obtain the explicit expression of \(\gamma _{\mathrm {ex}}(t-s)\), we calculate the noise correlation \(\langle \eta _t\eta _s\rangle ^{X_t}\). By using (A.12), the noise correlation is calculated as

$$\begin{aligned} \langle \eta _t\eta _s\rangle ^{X_t}&=\lambda ^2\kappa ^2_c\sum _i\sum _j \langle (x^i_t-X_t);(x^j_s-X_t)\rangle ^{X_t}\nonumber \\&=k_{\mathrm {B}}T\gamma (t-s)+\dfrac{N\lambda ^2\kappa ^2_c\kappa ^2_b/ \gamma ^2}{(\kappa _b+\lambda \kappa _c)^2/\gamma ^2-4r^2}\dfrac{L^2}{4} \left( e^{-2r|t-s|}-\dfrac{2r\gamma }{\kappa _b+\lambda \kappa _c} e^{-\frac{\kappa _b+\lambda \kappa _c}{\gamma }|t-s|}\right) . \end{aligned}$$
(A.16)

Thus, the excess friction kernel \(\gamma _{\mathrm {ex}}(t-s)\) is given by

$$\begin{aligned} \gamma _{\mathrm {ex}}(t-s)=\dfrac{1}{k_{\mathrm {B}}T}\dfrac{N\lambda ^2\kappa ^2_c \kappa ^2_b/\gamma ^2}{(\kappa _b+\lambda \kappa _c)^2/\gamma ^2-4r^2}\dfrac{L^2}{4} \left( e^{-2r|t-s|}-\dfrac{2r\gamma }{\kappa _b+\lambda \kappa _c} e^{-\frac{\kappa _b+\lambda \kappa _c}{\gamma }|t-s|}\right) . \end{aligned}$$
(A.17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanogami, T. Violation of the Second Fluctuation-dissipation Relation and Entropy Production in Nonequilibrium Medium. J Stat Phys 187, 25 (2022). https://doi.org/10.1007/s10955-022-02921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02921-7

Keywords

Navigation