Skip to main content
Log in

Fractional Poisson Fields and Martingales

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aletti, G.: On different topologies for set-indexing collections. Stat. Probab. Lett. 54(1), 67–73 (2001). https://doi.org/10.1016/S0167-7152(01)00062-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Aletti, G., Capasso, V.: Characterization of spatial Poisson along optional increasing paths—a problem of dimension’s reduction. Stat. Probab. Lett. 43(4), 343–347 (1999). https://doi.org/10.1016/S0167-7152(98)00268-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Aletti, G., Capasso, V.: Reduction of dimension for spatial point processes and right continuous martingales: Characterization of spatial Poisson processes. Stoch. Stoch. Rep. 72(1–2), 1–9 (2002). https://doi.org/10.1080/10451120212872

    Article  MathSciNet  MATH  Google Scholar 

  4. Andel, J.: Mathematics of Chance. Wiley Series in Probability and Statistics. Wiley, Hoboken (2001)

    Book  MATH  Google Scholar 

  5. Beghin, L.: Random-time processes governed by differential equations of fractional distributed order. Chaos Solitons Fractals 45(11), 1314–1327 (2012). https://doi.org/10.1016/j.chaos.2012.07.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14(61), 1790–1827 (2009). https://doi.org/10.1214/EJP.v14-675

    Article  MathSciNet  MATH  Google Scholar 

  7. Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15(22), 684–709 (2010). https://doi.org/10.1214/EJP.v15-762

    Article  MathSciNet  MATH  Google Scholar 

  8. Bingham, N.H.: Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17, 1–22 (1971). https://doi.org/10.1007/BF00538470

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowsher, C.G., Swain, P.S.: Identifying sources of variation and the flow of information in biochemical networks. PNAS 109(20), E1320–E1328 (2012). https://doi.org/10.1073/pnas.1119407109

    Article  ADS  Google Scholar 

  10. Brémaud, P.: Point Processes and Queues. Springer, New York (1981)

    Book  MATH  Google Scholar 

  11. Busani, O.: Aging uncoupled continuous time random walk limits. Electron. J. Probab. 21 (2016). https://doi.org/10.1214/16-EJP3802

  12. Cahoy, D.O., Uchaikin, V.V., Woyczynski, W.A.: Parameter estimation for fractional poisson processes. J. Stat. Plan. Inference 140(11), 3106–3120 (2010). https://doi.org/10.1016/j.jspi.2010.04.016

    Article  MathSciNet  MATH  Google Scholar 

  13. Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daley, D.J.: The Hurst index of long-range dependent renewal processes. Ann. Probab. 27(4), 2035–2041 (1999). https://doi.org/10.1214/aop/1022677560

    Article  MathSciNet  MATH  Google Scholar 

  15. Gergely, T., Yezhow, I.I.: On a construction of ordinary Poisson processes and their modelling. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27, 215–232 (1973). https://doi.org/10.1007/BF00535850

    Article  MathSciNet  MATH  Google Scholar 

  16. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math., Art. ID 298628 (2011). https://doi.org/10.1155/2011/298628

  17. Herbin, E., Merzbach, E.: The set-indexed Lévy process: stationarity, Markov and sample paths properties. Stoch. Process. Appl. 123(5), 1638–1670 (2013). https://doi.org/10.1016/j.spa.2013.01.001

    Article  MATH  Google Scholar 

  18. Ivanoff, B.G., Merzbach, E.: Characterization of compensators for point processes on the plane. Stoch. Stoch. Rep. 29(3), 395–405 (1990). https://doi.org/10.1080/17442509008833623

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivanoff, B.G., Merzbach, E.: A martingale characterization of the set-indexed Poisson process. Stoch. Stoch. Rep. 51(1–2), 69–82 (1994). https://doi.org/10.1080/17442509408833945

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivanoff, G., Merzbach, E.: Set-Indexed Martingales, Monographs on Statistics and Applied Probability, vol. 85. Chapman & Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  21. Ivanoff, B.G., Merzbach, E.: What is a multi-parameter renewal process? Stochastics 78(6), 411–441 (2006). https://doi.org/10.1080/17442500600965239

    Article  MathSciNet  MATH  Google Scholar 

  22. Ivanoff, B.G., Merzbach, E., Plante, M.: A compensator characterization of point processes on topological lattices. Electron. J. Probab. 12(2), 47–74 (2007). https://doi.org/10.1214/EJP.v12-390

    Article  MathSciNet  MATH  Google Scholar 

  23. Kallenberg, O.: Foundations of Modern Probability: Probability and Its Applications, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  24. Krengel, U., Sucheston, L.: Stopping rules and tactics for processes indexed by a directed set. J. Multivar. Anal. 11(2), 199–229 (1981). https://doi.org/10.1016/0047-259X(81)90109-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8(3–4), 201–213 (2003). https://doi.org/10.1016/S1007-5704(03)00037-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Leonenko, N., Merzbach, E.: Fractional Poisson fields. Methodol. Comput. Appl. Probab. 17(1), 155–168 (2015). https://doi.org/10.1007/s11009-013-9354-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Leonenko, N., Scalas, E., Trinh, M.: The fractional non-homogeneous Poisson process. Stat. Probab. Lett. 120, 147–156 (2017). https://doi.org/10.1016/j.spl.2016.09.024

    Article  MathSciNet  MATH  Google Scholar 

  28. Leonenko, N.N., Ruiz-Medina, M.D., Taqqu, M.S.: Fractional elliptic, hyperbolic and parabolic random fields. Electron. J. Probab. 16(40), 1134–1172 (2011). https://doi.org/10.1214/EJP.v16-891

    Article  MathSciNet  MATH  Google Scholar 

  29. Leonenko, N.N., Meerschaert, M.M., Sikorskii, A.: Fractional Pearson diffusions. J. Math. Anal. Appl. 403(2), 532–546 (2013). https://doi.org/10.1016/j.jmaa.2013.02.046

    Article  MathSciNet  MATH  Google Scholar 

  30. Leonenko, N.N., Meerschaert, M.M., Schilling, R.L., Sikorskii, A.: Correlation structure of time-changed Lévy processes. Commun. Appl. Ind. Math. 6(1), e-483 (2014). https://doi.org/10.1685/journal.caim.483

  31. Magdziarz, M.: Path properties of subdiffusion—a martingale approach. Stoch. Models 26(2), 256–271 (2010). https://doi.org/10.1080/15326341003756379

    Article  MathSciNet  MATH  Google Scholar 

  32. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math 32(Special Issue), 53–64 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Fract. Calc. Appl. Anal. 8(1), 7–38 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Meerschaert, M.M., Scheffler, H.P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118(9), 1606–1633 (2008). https://doi.org/10.1016/j.spa.2007.10.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, de Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter, Berlin (2012)

    MATH  Google Scholar 

  36. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011). https://doi.org/10.1214/EJP.v16-920

    Article  MathSciNet  MATH  Google Scholar 

  37. Merzbach, E., Nualart, D.: A characterization of the spatial Poisson process and changing time. Ann. Probab. 14(4), 1380–1390 (1986). https://doi.org/10.1214/aop/1176992378

    Article  MathSciNet  MATH  Google Scholar 

  38. Merzbach, E., Shaki, Y.Y.: Characterizations of multiparameter Cox and Poisson processes by the renewal property. Stat. Probab. Lett. 78(6), 637–642 (2008). https://doi.org/10.1016/j.spl.2007.09.026

    Article  MathSciNet  MATH  Google Scholar 

  39. Mijena, J.B.: Correlation structure of time-changed fractional Brownian motion. arxiv:1408.4502 (2014)

  40. Nane, E., Ni, Y.: Stability of the solution of stochastic differential equation driven by time-changed Lévy noise. Proc. Am. Math. Soc. 145(7), 3085–3104 (2017)

    Article  MATH  Google Scholar 

  41. Piryatinska, A., Saichev, A., Woyczynski, W.: Models of anomalous diffusion: the subdiffusive case. Physica A 349(3–4), 375–420 (2005). https://doi.org/10.1016/j.physa.2004.11.003

    Article  ADS  Google Scholar 

  42. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  43. Polito, F., Scalas, E.: A generalization of the space-fractional poisson process and its connection to some lvy processes. Electron. Commun. Probab. 21, 14 (2016). https://doi.org/10.1214/16-ECP4383

    Article  MATH  Google Scholar 

  44. Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43(9), 738–741 (2000). https://doi.org/10.1023/A:1004890226863

    Article  MathSciNet  Google Scholar 

  45. S, Ross: A First Course in Probability, 8th edn. Macmillan/Collier Macmillan, New York/London (2011)

    Google Scholar 

  46. Scalas, E., Gorenflo, R., Mainardi, F.: Uncoupled continuous-time random walks: solution and limiting behavior of the master equation. Phys. Rev. E 69(1 Pt 1), 011107 (2004). https://doi.org/10.1103/PhysRevE.69.011107

    Article  ADS  MathSciNet  Google Scholar 

  47. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, Chichester (1987). With a foreword by D. G. Kendall

  48. Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. Modern Probability and Statistics. VSP, Utrecht (1999). https://doi.org/10.1515/9783110935974. Stable Distributions and Their Applications, With a foreword by V. Yu. Korolev and Zolotarev

  49. Veillette, M., Taqqu, M.S.: Numerical computation of first passage times of increasing Lévy processes. Methodol. Comput. Appl. Probab. 12(4), 695–729 (2010). https://doi.org/10.1007/s11009-009-9158-y

    Article  MathSciNet  MATH  Google Scholar 

  50. Veillette, M., Taqqu, M.S.: Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes. Stat. Probab. Lett. 80(7–8), 697–705 (2010). https://doi.org/10.1016/j.spl.2010.01.002

    Article  MATH  Google Scholar 

  51. Watanabe, S.: On discontinuous additive functionals and Lévy measures of a Markov process. Jpn. J. Math. 34, 53–70 (1964)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

N. Leonenko and E. Merzbach wish to thank G. Aletti for two visits to University of Milan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ely Merzbach.

Additional information

N. Leonenko was supported in particular by Cardiff Incoming Visiting Fellowship Scheme and International Collaboration Seedcorn Fund and Australian Research Council’s Discovery Projects funding scheme (Project No. DP160101366).

Covariance Structure of Parameter-Changed Poisson Random Fields

Covariance Structure of Parameter-Changed Poisson Random Fields

In this Appendix, we prove a general result that can be used to compute the covariance structure of the parameter-changed Poisson random field:

$$\begin{aligned} Z\left( t_{1},t_{2}\right) =N(Y_{1}(t_{1}),Y_{2}(t_{2})),\ (t_{1},t_{2})\in {\mathbb {R}}_{+}^{2}, \end{aligned}$$

where \(Y_{1}=\left\{ Y_{1}(t_{1}),t_{1}\ge 0\right\} \) and \(Y_{2}=\left\{ Y_{2}(t_{2}),t_{2}\ge 0\right\} \) are independent non-negative non-decreasing stochastic processes, in general non-Markovian with non-stationary and non-independent increments, and \(N= \{N(t_{1},t_{2}),(t_{1},t_{2})\in {\mathbb {R}}_{+}^{2}\}\) is a PRF with intensity \(\lambda >0\). We also assume that \(Y_{1}\) and \(Y_{2}\) are independent of N.

For example, \(Y_{1}\) and \(Y_{2}\) might be inverse subordinators.

Theorem 11

Suppose that N is a PRF, \(Y_{1}\) and \(Y_{2}\) are two non-decreasing non-negative independent stochastic processes which are also independent of N. Then

  1. (1)

    if \({\mathrm {E}}Y_{1}(t_{1})=U_{1}(t_{1})\) and \({\mathrm {E}} Y_{2}(t_{2})=U_{2}(t_{2})\) exist, then \({\mathrm {E}}Z(t_{1},t_{2})\) exists and

    $$\begin{aligned} {\mathrm {E}}Z(t_{1},t_{2})={\mathrm {E}}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}} Y_{2}(t_{2}); \end{aligned}$$
  2. (2)

    if \(Y_{1}\) and \(Y_{2}\) have second moments, so does Z and

    $$\begin{aligned} \mathrm {Var}Z(t_{1},t_{2})= & {} \left[ {\mathrm {E}}N(1,1)\right] ^{2}\left\{ {\mathrm {E}}Y_{1}^{2}(t_{1}){\mathrm {E}}Y_{2}^{2}(t_{2})-\left( {\mathrm {E}} Y_{1}(t_{1})\right) ^{2}\left( {\mathrm {E}}Y_{2}(t_{2})\right) ^{2}\right\} \\&+\mathrm {Var}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}}Y_{2}(t_{2}) \end{aligned}$$

    and its covariance function

    $$\begin{aligned} {\mathrm {Cov}}(Z(t_{1},t_{2}),Z(s_{1},s_{2}))={\mathrm {Cov}}\left( N(Y_{1}(t_{1}),Y_{2}(t_{2})),N(Y_{1}(s_{1}),Y_{2}(s_{2}))\right) \end{aligned}$$

    for \(s_{1}<t_{1},s_{2}<t_{2}\) is given by:

    $$\begin{aligned}&({\mathrm {E}}N(1,1))^{2} \Big \{ {\mathrm {Cov}}\left( Y_{1}(t_{1}),Y_{1}(s_{1})\right) {\mathrm {Cov}}\left( Y_{2}(t_{2}),Y_{2}(s_{2})\right) \nonumber \\&\quad +\,{\mathrm {E}}Y_{2}(t_{2}){\mathrm {E}}Y_{2}(s_{2}) {\mathrm {Cov}}\left( Y_{1}(t_{1}),Y_{1}(s_{1})\right) +{\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}}Y_{1}(s_{1}) {\mathrm {Cov}}\left( Y_{2}(t_{2}),Y_{2}(s_{2})\right) \Big \}\nonumber \\&\quad +\, \mathrm {Var}N(1,1){\mathrm {E}}Y_{1}(s_{1}){\mathrm {E}}Y_{2}(s_{2}) \end{aligned}$$
    (A.1)

    and for any \((s_{1},s_{2}),\) and \((t_{1},t_{2})\) from \({\mathbb {R}}_{+}^{2}\)

    $$\begin{aligned}&({\mathrm {E}}N(1,1))^{2} \Big \{ {\mathrm {Cov}}\left( Y_{1}(t_{1}),Y_{1}(s_{1})\right) {\mathrm {Cov}}\left( Y_{2}(t_{2}),Y_{2}(s_{2})\right) \nonumber \\&\quad +\,{\mathrm {E}}Y_{2}(t_{2}){\mathrm {E}}Y_{2}(s_{2}) {\mathrm {Cov}}\left( Y_{1}(t_{1}),Y_{1}(s_{1})\right) +{\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}}Y_{1}(s_{1}) {\mathrm {Cov}}\left( Y_{2}(t_{2}),Y_{2}(s_{2})\right) \Big \} \nonumber \\&\quad +\,\mathrm {Var}N(1,1){\mathrm {E}}Y_{1}(\min (s_{1},t_{1})){\mathrm {E}}Y_{2}(\min (s_{2},t_{2})) \end{aligned}$$
    (A.2)

Remark 7

These formulae are valid for any Lévy random field \(N=\{N(t_{1},t_{2})\),\( (t_{1},t_{2})\in {\mathbb {R}}_{+}^{2}\}\), with finite expectation \({\mathrm {E}} N(1,1)\) and finite variance \(\mathrm {Var}N(1,1),\) for PRF \({\mathrm {E}} N(1,1)=\lambda ;\ \mathrm {Var}N(1,1)=\lambda \) and to apply these formulae one needs to know

$$\begin{aligned} U_{1}(t_{1})={\mathrm {E}}Y_{1}(t),\ U_{2}(t_{2})={\mathrm {E}}Y_{2}(t),\ U_{1}^{(2)}(t_{1})={\mathrm {E}}Y_{1}^{2}(t),~U_{2}^{(2)}(t_{1})={\mathrm {E}} Y_{2}^{2}(t),\ \end{aligned}$$

and \({\mathrm {Cov}}\left( Y_{1}(t_{1}),Y_{1}(s_{1})\right) ,\; {\mathrm {Cov}} \left( Y_{2}(t_{2}),Y_{2}(s_{2})\right) \) which are available for many non-negative processes \(Y_{1}(t)\) and \(Y_{2}(t)\) induction inverse subordinators.

Remark 8

One can compute the following expression for the one-dimensional distribution of the parameter-changed PRF:

$$\begin{aligned} {\mathrm {P}}\left( N(Y_{1}(t_{1}), Y_{2}(t_{2}))=k\right)= & {} p_{k}(t_{1},t_{2}) \\= & {} \int _{0}^{\infty }\int _{0}^{\infty }\frac{e^{-\lambda x_{1}x_{2}}(\lambda x_{1}x_{2})^{k}}{k!}f_{1}(t_{1},x_{1})f_{2}(t_{2},x_{2})dx_{1}dx_{2},\\&\quad k=0,1,2,\ldots \end{aligned}$$

where

$$\begin{aligned} f_{i}(t_{i},x_{i}) = \frac{d}{d{x_i}}{\mathrm {P}}\left\{ Y_{i}(t_{i})\le x_{i}\right\} =\frac{d}{dx_{i}}G_{t_i}^{(i)}(x_{i}), \quad i=1,2. \end{aligned}$$

and its Laplace transform:

$$\begin{aligned} {\mathscr {L}} \left\{ p_{k}(t_{1},t_{2}); s_{1},s_{2} \right\}= & {} \int _{0}^{\infty }\int _{0}^{\infty }\frac{e^{-\lambda x_{1}x_{2}}(\lambda x_{1}x_{2})^{k}}{k!} {\mathscr {L}}\\&\left\{ f_{1}(t_{1},x_{1});s_{1}\right\} {\mathscr {L}} \left\{ f_{2}(t_{2},x_{2});s_{2}\right\} dx_{1}dx_{2}, \end{aligned}$$

where

$$\begin{aligned} {\mathscr {L}} \left\{ f_{i}(t_{i},x_{i});s_{i}\right\} =\int _{0}^{\infty }e^{-s_{i}t_{i}}f_{i}(t_{i},x_{i})dt_{i},\quad i=1,2. \end{aligned}$$

Proof of Theorem 11

We denote

$$\begin{aligned}&G_{t_{1}}^{(1)}(u_{1})={\mathrm {P}}\left\{ Y_{1}(t_{1})\le u_{1}\right\} ,&G_{t_{2}}^{(2)}(u_{2})={\mathrm {P}}\left\{ Y_{2}(t_{2})\le u_{2}\right\} . \end{aligned}$$

We know that for a PRF

$$\begin{aligned} {\mathrm {E}}{\varDelta } _{s_{1},s_{2}}N(t_{1},t_{2})= & {} {\mathrm {E}}N(1,1) \left( t_{1}-s_{1}\right) \left( t_{2}-s_{2}\right) =\mathrm {Var}{\varDelta } _{s_{1},s_{2}}N(t_{1},t_{2});\\ {\mathrm {E}}\left( {\varDelta } _{s_{1},s_{2}}N(t_{1},t_{2})\right) ^{2}= & {} {\mathrm {E}}N(1,1) \left( t_{1}-s_{1}\right) \left( t_{2}-s_{2}\right) +\left[ {\mathrm {E}}N(1,1)\left( t_{1}-s_{1}\right) \left( t_{2}-s_{2}\right) \right] ^{2}. \end{aligned}$$

To prove (1) we use simple conditioning arguments:

$$\begin{aligned} {\mathrm {E}}Z(t_{1},t_{2})=\int _{0}^{\infty }\int _{0}^{\infty }u\ v\ {\mathrm {E}} N(1,1)G_{t_{1}}^{(1)}(du)G_{t_{2}}^{(2)}(dv)={\mathrm {E}}N(1,1){\mathrm {E}} Y_{1}(t_{1}){\mathrm {E}}Y_{2}(t_{2}). \end{aligned}$$

Let us prove (2).

For the variance, we have

$$\begin{aligned} \mathrm {Var}Z(t_{1},t_{2})= & {} {\mathrm {E}}\left( N(Y_{1}(t_{1}),Y_{2}(t_{2})\right) ^{2}-\left( {\mathrm {E}} N(Y_{1}(t_{1}),Y_{2}(t_{2})\right) ^{2} \\= & {} \int _{0}^{\infty }\int _{0}^{\infty }\left( ({\mathrm {E}}N(u_{1},u_{2}))^{2}+ \mathrm {Var}N(u_{1},u_{2})\right) G_{t_{1}}^{(1)}(du_{1})G_{t_{2}}^{(2)}(du_{2}) \\&-\left( {\mathrm {E}}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}} Y_{2}(t_{2})\right) ^{2} \\= & {} \int _{0}^{\infty }\int _{0}^{\infty }\left[ \left( {\mathrm {E}}N(1,1)\right) ^{2}u_{1}^{2}u_{2}^{2}+\mathrm {Var}N(1,1)u_{1}u_{2}\right] G_{t_{1}}^{(1)}(du_{1})G_{t_{2}}^{(2)}(du_{2}) \\&-\left( {\mathrm {E}}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}} Y_{2}(t_{2})\right) ^{2} \\= & {} \left( {\mathrm {E}}N(1,1)\right) ^{2}{\mathrm {E}}Y_{1}^{2}(t_{1}){\mathrm {E}} Y_{2}^{2}(t_{2})+\mathrm {Var}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}} Y_{2}(t_{2}) \\&-\left( {\mathrm {E}}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}} Y_{2}(t_{2})\right) ^{2} \\= & {} \left( {\mathrm {E}}N(1,1)\right) ^{2}\left\{ {\mathrm {E}}Y_{1}^{2}(t_{1}) {\mathrm {E}}Y_{2}^{2}(t_{2})-({\mathrm {E}}Y_{1}(t_{1}))^{2}({\mathrm {E}} Y_{2}(t_{2}))^{2}\right\} \\&+\mathrm {Var}N(1,1){\mathrm {E}}Y_{1}(t_{1}){\mathrm {E}}Y_{2}(t_{2}). \end{aligned}$$

To compute the covariance structure, first we consider the case when \( s_{1}<t_{1},\ s_{2}<t_{2}\). Then

$$\begin{aligned}&{\mathrm {E}}N(s_{1},s_{2})N(t_{1},t_{2}) \\&={\mathrm {E}} \Big (N(s_{1},s_{2}) \Big \{N(t_{1},t_{2})-N(t_{1},s_{2})-N(s_{1},t_{2})+N(s_{1},s_{2})\\&\quad +N(t_{1},s_{2})+N(s_{1},t_{2})-N(s_{1},s_{2}) \Big \}\Big ) \\&={\mathrm {E}}{\varDelta } _{s_{1},s_{2}}N(t_{1},t_{2}){\mathrm {E}}N(s_{1},s_{2})+ {\mathrm {E}}N(t_{1},s_{2})N(s_{1},s_{2})\\&\quad +{\mathrm {E}} N(s_{1},t_{2})N(s_{1},s_{2})-{\mathrm {E}}N^{2}(s_{1},s_{2}). \end{aligned}$$

Using the facts that

$$\begin{aligned} \begin{aligned} {\mathrm {E}}{\varDelta } _{s_{1},s_{2}}N(t_{1},t_{2}){\mathrm {E}} N(s_{1},s_{2})&=(t_{1}-s_{1})(t_{2}-s_{2})\left[ {\mathrm {E}}N(1,1)\right] ^{2}s_{1}s_{2}, \\ {\mathrm {E}}N(t_{1},s_{2})N(s_{1},s_{2})&={\mathrm {E}} \{N(t_{1},s_{2})-N(s_{1},s_{2})+N(s_{1},s_{2})\}N(s_{1},s_{2}) \\&={\mathrm {E}}{\varDelta } _{s_{1},0}N(t_{1},s_{2}){\mathrm {E}}N(s_{1},s_{2})+{\mathrm {E}} N^{2}(s_{1},s_{2})\\&=\left[ {\mathrm {E}}N(1,1)\right] ^{2}(t_{1}-s_{1})s_{1}s_{2}^{2}+{\mathrm {E}}N^{2}(s_{1},s_{2}), \end{aligned} \end{aligned}$$

it is easy to obtain

$$\begin{aligned}&{\mathrm {E}}N(s_{1},s_{2})N(t_{1},t_{2})=\left[ {\mathrm {E}}N(1,1)\right] ^{2}t_{1}t_{2}s_{1}s_{2}+s_{1}s_{2}\mathrm {Var}N(1,1). \end{aligned}$$

Since the processes \(N,Y_{1},Y_{2}\) are independent, a conditioning argument yields (A.1) and (A.2). In a similar way, one can consider the case \(s_{1}>t_{1}, s_{2}<t_{2}\). \(\square \)

Proof of Proposition 2

It follows from Theorem 11 and Proposition 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aletti, G., Leonenko, N. & Merzbach, E. Fractional Poisson Fields and Martingales. J Stat Phys 170, 700–730 (2018). https://doi.org/10.1007/s10955-018-1951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1951-y

Keywords

Mathematics Subject Classification

Navigation