Skip to main content
Log in

The Intriguing Properties of 1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide Ionic Liquid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Among all ionic liquids (ILs) which can be used as electrolyte solvents in Li-ion batteries (LIB), 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2mim][FSI], is certainly the most noteworthy. One reason for that is driven by its exceptionally low viscosity, which enhances its intrinsic conductivity and makes it a good solvent for the formulation of safer electrolytes in LIB in comparison with classical organic solvents. The solubility of lithium salts in [C2mim][FSI] can be very high (more than 4 mol·L−1 for LiFSI), which opens the field to the use highly concentrated electrolyte solutions containing only ions. With the aim of comparing the physico-chemical properties of different FSI based ILs and the electrolytes obtained by addition of a doping Li-salt, three [FSI] based ILs were selected: [C2mim][FSI], N-propyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [C3mpyrr][FSI] and N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [C4mpyrr][FSI]. For comparison, a TFSI based IL ([C4mpyrr][TFSI]) and a reference alkylcarbonate mixture (ethylcarbonate (EC)/propylcarbonate (PC)/dimethylcarbonate (DMC) (in the proportion 1/1/3 by weight) are also studied. LiFSI or lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were used as doping lithium salts. The following physico-chemical properties have been investigated: density, viscosity, ionic conductivity, ionicity and transference number. From these results, it can be concluded that all [FSI] based ILs considered in this work exhibit both a relatively low viscosity, a high conductivity, a high ionicity and Li-ion transference number. All these properties make them good candidates for use as electrolyte in Li-ion batteries. Moreover their great thermal stability and low flammability give them an advantage over classical organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barrer, R.M.: The viscosity of pure liquids. II. Polymerised ionic melts. Trans. Faraday Soc. 39, 59–67 (1943)

    Article  CAS  Google Scholar 

  2. Macfarlane, D.R., Forsyth, M., Howlett, P.C., Pringle, J.M., Sun, J., Annat, G., Neil, W., Izgorodina, E.I.: Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res. 40, 1165–1173 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Appetecchi, G.B., Montanino, M., Balducci, A., Lux, S.F., Winterb, M., Passerini, S.: Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes. J. Power Sources 192, 599–605 (2009)

    Article  CAS  Google Scholar 

  4. Lewandowski, A., Świderska-Mocek, A.: Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J. Power Sources 194, 601–609 (2009)

    Article  CAS  Google Scholar 

  5. Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S.I., Tachibana, K., Katayama, S.: New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J. Power Sources 196, 5637–5644 (2011)

    Article  CAS  Google Scholar 

  6. Lee, J.S., Bae, J.Y., Lee, H., Quan, N.D., Kim, H.S., Kim, H.: Ionic liquids as electrolytes for Li ion batteries. J. Ind. Eng. Chem. 10, 1086–1089 (2004)

    CAS  Google Scholar 

  7. Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005)

    Article  CAS  Google Scholar 

  8. Welton, T.: Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)

    Article  CAS  Google Scholar 

  9. Garcia, B., Lavallée, S., Perron, G., Michot, C., Armand, M.: Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta 49, 4583–4588 (2004)

    Article  CAS  Google Scholar 

  10. Borgel, V., Markevich, E., Aurbach, D., Semrau, G., Schmidt, M.: On the application of ionic liquids for rechargeable Li batteries: high voltage systems. J. Power Sources 189, 331–336 (2009)

    Article  CAS  Google Scholar 

  11. Umebayashi, Y., Mitsugi, T., Fukuda, S., Fujimori, T., Fujii, K., Kanzaki, R., Takeuchi, M., Ishiguro, S.-I.: Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethane-sulfonyl) imide anion studied by raman spectroscopy and DFT calculations. J. Phys. Chem. B. 111, 13028–13032 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Saito, Y., Umecky, T., Niwa, J., Sakai, T., Maeda, S.: Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J. Phys. Chem. B 111, 11794–11802 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S.Y., Yong, H.H., Lee, Y.J., Kim, S.K., Ahn, S.: Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. J. Phys. Chem. B 109, 13663–13667 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Seki, S., Mita, Y., Tokuda, H., Ohno, Y.: Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. Electrochem. Solid-State Lett. 10, A237–A240 (2007)

    Article  CAS  Google Scholar 

  15. Seki, S., Ohno, Y., Kobayashi, Y., Miyashiro, H., Usami, A., Mita, Y., Tokuda, H., Watanabe, M., Hayamizu, K., Tsuzuki, S., Hattori, M., Terada, N.: Imidazolium-based room-temperature ionic liquid for lithium secondary batteries. J. Electrochem. Soc. 154, A173–A177 (2007)

    Article  CAS  Google Scholar 

  16. Seki, S., Ohno, Y., Mita, Y., Serizawa, N., Takei, K., Miyashiro, H.: Imidazolium-based room-temperature ionic liquid for lithium secondary batteries: relationships between lithium salt concentration and battery performance characteristics. ECS Electrochem. Lett. 1, A77–A79 (2012)

    Article  CAS  Google Scholar 

  17. Srour, H., Rouault, H., Santini, C.: Imidazolium based ionic liquid electrolytes for Li-ion secondary batteries based on graphite and LiFePO4. J. Electrochem. Soc. 160, A66–A69 (2013)

    Article  CAS  Google Scholar 

  18. Best, A.S., Bhatt, A.I., Hollenkamp, A.F.: Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J. Electrochem. Soc. 157, A903 (2010)

    Article  CAS  Google Scholar 

  19. Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Mita, Y., Terada, N., Charest, P., Guerfi, A., Zaghib, K.: Compatibility of N-methyl-N-propylpyrrolidinium cation room-temperature ionic liquid electrolytes and graphite electrodes. J. Phys. Chem. C 112, 16708–16713 (2008)

    Article  CAS  Google Scholar 

  20. Galiński, M., Lewandowski, A., Stępniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006)

    Article  CAS  Google Scholar 

  21. Lewandowski, A., Świderska-Mocek, A.: Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J. Power Sources 194, 601–609 (2009)

    Article  CAS  Google Scholar 

  22. Etacherie, V., Marom, R., Elazari, R., Gregory, S., Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  CAS  Google Scholar 

  23. Eftekhari, A., Liu, Y., Chen, P.: Different roles of ionic liquids in lithium batteries. J. Power Sources 334, 221–239 (2016)

    Article  CAS  Google Scholar 

  24. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Klamt, A., Schüürmann, G.: COSMO a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2(2), 799–805 (1993)

    Article  Google Scholar 

  26. Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162, 165–169 (1989)

    Article  CAS  Google Scholar 

  27. Coadou, E., Goodrich, P., Neale, A.R., Timperman, L., Hardacre, C., Jacquemin, J., Anouti, M.: Synthesis and thermophysical properties of ether-functionalized sulfonium ionic liquids as potential electrolytes for electrochemical applications. ChemPhysChem 17, 3992–4002 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sayah, S., Ghamouss, F., Tran-Van, F., Santos-Peña, J., Lemordant, D.: A bis(fluorosulfonyl)imide based ionic liquid as safe and efficient electrolyte for Si/Sn–Ni/C/Al composite anode. Electrochim. Acta 243, 197–206 (2017)

    Article  CAS  Google Scholar 

  29. Kerner, M., Plylahan, N., Scheers, J., Johansson, P.: Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? Phys. Chem. Chem. Phys. 17, 19569–19581 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Johansson, P., Fast, L.E., Matic, A., Appetecchi, G.B., Passerini, S.: The conductivity of pyrrolidinium and sulfonylimide-based ionic liquids: a combined experimental and computational study. J. Power Sources 195, 2074–2076 (2010)

    Article  CAS  Google Scholar 

  31. Rocha, M., Ribeiro, F., Lobo Ferreira, A., Coutinho, J., Santos, L.: Thermophysical properties of [CN−1C1Im][PF6] ionic liquids. J. Mol. Liq. 188, 196–202 (2013)

    Article  CAS  Google Scholar 

  32. Navia, P., Troncoso, J., Romani, L.: Isobaric thermal expansivity for nonpolar compounds. J. Chem. Eng. Data 55, 2173–2179 (2010)

    Article  CAS  Google Scholar 

  33. Montanino, M., Moreno, M., Alessandrini, F., Appetecchi, G.B., Passerini, S., Zhou, Q., Henderson, W.A.: Physical and electrochemical properties of binary ionic liquid mixtures: (1 − x) PYR 14TFSI − (x) PYR 14IM 14. Electrochim. Acta 60, 163–169 (2012)

    Article  CAS  Google Scholar 

  34. Zhang, H., Feng, W., Nie, J., Zhou, Z.: Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery. J. Fluor. Chem. 174, 49–61 (2015)

    Article  CAS  Google Scholar 

  35. Chaudoy, V.: Electrolytes Polymères Gélifiés pour Microbatteries au Lithium. PhD dissertation, Université François Rabelais de Tours (2016)

  36. Berhaut, C.L.: Propriétés de Transport des Sels de Lithium LiTDI et LiFSI-Application à la Formulation d’Electrolytes Optimisés pour Batteries Li-ion. PhD dissertation, Université François Rabelais de Tours (2016)

  37. Solvionic: http://fr.solvionic.com/produits/1-butyl-1-methylpyrrolidiniumbistrifluoro-methane-sulfonylimide-99.9

  38. Trigueiro, J.P.C., Lavall, R.L., Silva, G.G.: Nanocomposites of graphene nanosheets/multiwalled carbon nanotubes as electrodes for in-plane supercapacitors. Electrochim. Acta 187, 312–322 (2016)

    Article  CAS  Google Scholar 

  39. Petroffe, G., Beouch, L., Cantin, S., Aubert, P.-H., Plesse, C., Dudon, J.-P., Vidal, F., Chevrot, C.: Investigations of ionic liquids on the infrared electroreflective properties of poly(3,4-ethylenedioxythiophene). Solar Energy Mat. Solar Cells 177, 23–31 (2017)

    Article  CAS  Google Scholar 

  40. Angell, C.A.: Fast ion motion in glassy and amorphous materials. Solid State Ionics 9–10, 3–16 (1983)

    Article  Google Scholar 

  41. Walden, P.Z.: Überorganischelösungs und ionisierungsmittel. III. Teil: innerereibung und derenzusammen-hangmitdemleitvermögen. Phys. Chem. 55, 207–246 (1906)

    CAS  Google Scholar 

  42. Grotthuss, C.J.T.: Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann. Chim. 58, 54–73 (1806)

    Google Scholar 

  43. Thorsmølle, V.K., Rothenberger, G., Topgaard, D., Brauer, J.C., Kuang, D.-B., Zakeeruddin, S.M., Lindman, B., Grätzel, M., Moser, J.-E.: Extraordinarily efficient conduction in a redox-active ionic liquid. ChemPhysChem 12, 145–149 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Yoshizawa, M., Xu, W., Angell, C.A.: Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ∆pK a from aqueous solutions. J. Am. Chem. Soc. 125, 15411–15419 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. Yoon, H., Best, A.S., Forsyth, M., MacFarlane, D.R., Howlett, P.C.: Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys. Chem. Chem. Phys. 17, 4656–4663 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Fujii, K., Hamano, H., Doi, H., Song, X., Tsuzuki, S., Hayamizu, K., Seki, S., Kameda, Y., Dokko, K., Watanabe, M., Umebayashi, Y.: Unusual Li+ ion solvation structure in bis(fluorosulfonyl)amide based ionic liquid. J. Phys. Chem. C 117, 19314–19324 (2013)

    Article  CAS  Google Scholar 

  47. Sharovaa, V., Morettia, A., Diemant, T., Varzia, A., Behma, R.J., Passerini, S.: Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. J. Power Sources 375, 43–52 (2018)

    Article  CAS  Google Scholar 

  48. Kang, S.-J., Park, K., Park, S.-H., Lee, H.: Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries. Electrochim. Acta 259, 949–954 (2018)

    Article  CAS  Google Scholar 

  49. Appetecchi, G. B., Montanino, M., Passerini, S.: Ionic liquid-based electrolytes for high energy, safer lithium batteries. In: Visser, A.E., Bridges N.J., Rogers, R.D. (eds.) Ionic Liquids. Science and Applications. ACS Symposium Series 1117, Chap. 4, 67–128 (2012)

Download references

Acknowledgements

Support for this study was provided by the French research national agency (ANR) under the program PROGELEC (2013) and the project “Development of NEW Si-based Nanocomposite Materials with Stabilized Surface for Negative Electrodes of Li-ion batteries (Newmaste). We wish also to thank Dr. Catherine Santini (CPE, Lyon) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lemordant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayah, S., Ghamouss, F., Santos-Peña, J. et al. The Intriguing Properties of 1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide Ionic Liquid. J Solution Chem 48, 992–1008 (2019). https://doi.org/10.1007/s10953-018-0814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0814-0

Keywords

Navigation