Skip to main content
Log in

First Hydrolysis Constant of Lutetium (III) by Solvent Extraction

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solvent extraction method involving diglycolic acid (dicarboxy methyl ether) as a competitive ligand to lutetium and N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid (TES) as a buffer was used to study the hydrolysis of lutetium in 1 mol⋅dm−3 NaCl ionic strength at 303 K. Acid dissociation constants of H2DG and TES were determined and the possible formation of lutetium–TES compounds was investigated. It was found that lutetium does not form compounds with TES under the experimental conditions. The solvent extraction method using 177Lu as a tracer was applied and the first hydrolysis constant of lutetium was determined by means of the relationship of the equilibrium constant of the complex Lu(DG)+ in the absence and in the presence of hydrolysis. The value obtained was log 10 β Lu,H=−7.9±0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Frolova, U.K., Kumok, V.N., Serebrennnikov, V.V.: Hydrolysis of ions of the rare earth elements and yttrium in aqueous solutions. Izv. Vysshikh Uchebn. Zavedenii Khim. Khim. Tekhnol. 9, 176–179 (1966); Chem. Abstr. 65, 9816c (1966)

    CAS  Google Scholar 

  2. Guillaumont, R., Désiré, B., Galin, M.: Première constante d’hydroyse des lanthanides. Radiochem. Radioanal. Lett. 8, 189–198 (1971)

    CAS  Google Scholar 

  3. Usherenko, L.N., Shorik, N.A.: Hydrolysis of rare earth metal, yttrium, scandium and thorium ions in water and in water–ethanol mixtures. Russ. J. Inorg. Chem. 17, 1533–1535 (1972)

    Google Scholar 

  4. Ramírez-García, J.J., Solache-Ríos, M., Jiménez-Reyes, M., Rojas-Hernández, A.: Solubility and hydrolysis of La, Pr, Eu, Er, and Lu in 1M NaCl ionic strength at 303 K. J. Solution Chem. 32, 879–896 (2003)

    Article  Google Scholar 

  5. Baes, C.F. Jr., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)

    Google Scholar 

  6. Martell, A.E., Smith, R.M.: Critical Stability Constants. Plenum, New York (1977)

    Google Scholar 

  7. M’Halla, J., Chemla, J., Bury, R., David, F.: Étude conductimétrique de l’hydrolyse des ions lanthanides dans l’eau. J. Chim. Phys. 85, 121–133 (1988)

    CAS  Google Scholar 

  8. Mohapatra, P.K., Khopkar, P.K.: Hydrolysis on actinides and lanthanides: Hydrolysis of some trivalent actinide and lanthanide ions studied by extraction with thenoyltrifluoroacetone. Polyhedron 8, 2071–2076 (1989)

    Article  CAS  Google Scholar 

  9. Khopkar, P.K.: (unpublished work) cited in Ref. [19] of Mohapatra, P.K., Khopkar, P.K., Polyhedron 8, 2071–2076 (1989)

  10. Klungness, G.D., Byrne, R.H.: Comparative hydrolysis behavior of the rare earths and yttrium: The influence of temperature and ionic strength. Polyhedron 19, 99–107 (2000)

    Article  CAS  Google Scholar 

  11. Tuck, D.G.: A proposal for the use of a standard format for the publication of stability constant measurements. Pure Appl. Chem. 61, 1161–1163 (1989)

    CAS  Google Scholar 

  12. Choppin, G.R., Mathur, J.N.: Hydrolysis of actinyl(VI) cations. Radiochim. Acta 52/53, 25–28 (1991)

    Google Scholar 

  13. Jiménez-Reyes, M., Solache-Ríos, M.: The first hydrolysis constant of Eu(III) in 4 M ionic strength at 303 K. Radiochim. Acta 64, 201–203 (1994)

    Google Scholar 

  14. López-González, H., Jiménez-Reyes, M., Rojas-Hernández, A., Solache-Ríos, M.: Determination of the hydrolysis and carbonate constants of Pr(III) in 2M NaCl ionic strength at 303 K. Talanta 44, 1891–1899 (1997)

    Article  Google Scholar 

  15. Caceci, M.S., Choppin, G.R.: The determination of the first hydrolysis constant of Eu(III) and Am(III). Radiochim. Acta 33, 101–104 (1983)

    CAS  Google Scholar 

  16. Grenthe, I., Tobiasson, I.: Thermodynamic properties of rare earth complexes. I. Stability constants for the rare earth diglycolate complexes. Acta Chem. Scand. 17, 2101–2112 (1963)

    CAS  Google Scholar 

  17. Caceci, M.S., Choppin, G.R.: An improved technique to minimize cation adsorption in neutral solutions. Radiochim. Acta 33, 113–114 (1983)

    CAS  Google Scholar 

  18. Lederer, M.C., Hollander, J.M., Perlman, I.: Table of Isotopes. Wiley, New York (1968)

    Google Scholar 

  19. Charlot, G.: Chimie analytique quantitative, vol. II, p. 536. Masson et Cie, Paris (1974)

    Google Scholar 

  20. Fritz, J.S., Oliver, R.T., Pietrzik, D.J.: Chelometric titrations using an azoarsonic acid indicator. Anal. Chem. 30, 1111–1114 (1958)

    Article  CAS  Google Scholar 

  21. Snoeyink, V.L., Jenkins, D.: Química del agua, p. 487. Limusa, México (1990)

    Google Scholar 

  22. Gans, P., Sabatini, A., Vacca, A.: SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalton Trans., 1195–1200 (1985)

  23. Tichane, R.M., Bennett, W.E.: Cation compounds of metal ions with derivatives and analogs of ammoniadiacetic acid. J. Am. Chem. Soc. 79, 1293–1296 (1957)

    Article  CAS  Google Scholar 

  24. Miyazaki, M., Shimoishi, Y., Miyata, H., Toei, K.: The reaction of dicarboxylic acids containing ether linkages with alkaline earth metals. J. Inorg. Nucl. Chem. 36, 2033–2038 (1974)

    Article  CAS  Google Scholar 

  25. Grenthe, I., Ots, H.: Thermodynamic properties of rare earth complexes. XII. Enthalpy and heat capacity changes for the formation of rare earth diglycolate complexes at 5, 20, 35, and 50°. Acta Chem. Scand. 26, 1229–1242 (1972)

    Article  CAS  Google Scholar 

  26. Cassol, A., Di Bernardo, P., Portanova, R., Magon, L.: Interaction of MO 2+2 ions (M = U, Np, and Pu) with dicarboxylate ligands containing other donor atoms. Inorg. Chim. Acta 7, 353–358 (1973)

    Article  CAS  Google Scholar 

  27. Vega, C., Bates, R.: Buffers for the physiological pH range: Thermodynamic constants of four substituted aminoethanesulfonic acids from 5 to 50 °C. Anal. Chem. 48, 1293–1296 (1976)

    Article  CAS  Google Scholar 

  28. Puigdomenech, I.: Program MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms). Royal Institute of Technology. Inorganic Chemistry. 10644 Stockholm, Sweden, ignasi@inorg.kth.se

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-García, J., Jiménez-Reyes, M., Solache-Ríos, M. et al. First Hydrolysis Constant of Lutetium (III) by Solvent Extraction. J Solution Chem 36, 1063–1071 (2007). https://doi.org/10.1007/s10953-007-9167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9167-9

Keywords

Navigation