Skip to main content
Log in

Host–Guest Complexation of β-, γ-Cyclodextrin with Alkyl Trimethyl Ammonium Bromides in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

As a continuation of our previous investigation, interactions between cyclodextrin (β-CD), γ-cyclodextrin (γ-CD) and alkyl trimethylammonium bromides in aqueous solutions have been studied with titration calorimetry and 1H NMR at 298.15 K. The results are discussed in terms of the amphiphilic interaction of CD with surfactants and the iceberg structure formed by water molecules existing around the hydrophobic tail of surfactant molecules. The stoichiometry of the β-CD–surfactant system is 1:1 whereas that of the γ-CD–surfactant system is 1:2. The corresponding formation enthalpy (negative) of the complexes of the two systems decreases with an increase in the number of carbon atoms (n) in hydrophobic chain of surfactant molecule, C n H2n+1, whereas the entropy increases with the enlargement of n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eastburn, S.D., Tao, B.Y.: Applications of modified cyclodextrins. Biotechnol. Adv. 12, 325–339 (1994)

    Article  PubMed  CAS  Google Scholar 

  2. Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Takahata, Y., Lino, A.C.S., Jaime, C., Paula, E.: Theoretical and experimental study of a praziquantel and β-cyclodextrin inclusion complex using molecular mechanic calculations and 1H-nuclear magnetic resonance. J. Pharm. Biomed. Anal. 41, 1428–1432 (2006)

    Article  PubMed  Google Scholar 

  3. Zhang, H.-R., Chen, G., Wang, L., Ding, L., Tian, Y., Jin, W.-Q., Zhang, H.-Q.: Study on the inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 252, 1–10 (2006)

    Article  CAS  Google Scholar 

  4. Illapakurthy, A.C., Wyandt, C.M., Stodghill, S.P.: Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions. Eur. J. Pharm. Biopharm. 59, 325–332 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. Martín, L., León, A., Olives, A.I., Castillo, B., Marín, M.A.: Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with β-cyclodextrin and chemically modified β-cyclodextrins. Talanta 60, 493–503 (2003)

    Article  Google Scholar 

  6. Chan, J., Sun, D.-Z., Feng, C.-G.: Spectrophotometric studies on the inclusion formation of β-cyclodextrin with 3,4-(methylenedioxyphenyl) benzylideneaniline. J. Solution Chem. 31, 211–222 (2002)

    Article  Google Scholar 

  7. Guo, M.-Q., Zhang, S.-Q., Song, F.-R., Wang, D.-W., Liu, Z.-Q., Liu, S.-Y.: Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 38, 723–731 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Carlos, B.D., Elisa, G.R.: Monitoring dediazoniation product formation by high-performance liquid chromatography after derivatization. J. Chromatogr. A 989, 221–229 (2003)

    Article  Google Scholar 

  9. Nathalie, M., Philippe, M., Ribet, J.P.: Spectrofluorimetric study of eflucimibe–γ-cyclodextrin inclusion complex. Eur. J. Pharm. Biopharm. 59, 523–526 (2005)

    Article  Google Scholar 

  10. Pacioni, N.L., Veglia, A.V.: Determination of carbaryl and carbofuran in fruits and tap water by β-cyclodextrin enhanced fluorimetric method. Anal. Chim. Acta 488, 193–202 (2003)

    Article  CAS  Google Scholar 

  11. Manzoori, J.L., Amjiadi, M.: Spectrofluorimetric study of host–guest complexation of ibuprofen with β-cyclodextrin and its analytical application. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 59, 909–916 (2003)

    Article  Google Scholar 

  12. Spencer, J.N., He, Q., Ke, X.-M., Wu, Z.-Q., Fetter, E.: Complexation of inorganic anions and small organic molecules with alpha-cyclodextrin in water. J. Solution Chem. 27, 1009–1019 (1998)

    Article  CAS  Google Scholar 

  13. Bernini, A., Spiga, O., Ciutti, A., Scarselli, M., Bottoni, G., Mascagni, G., Niccolai, N.: NMR studies of the inclusion complex between β-cyclodextrin and paroxetine. Eur. J. Pharm. Sci. 22, 445–450 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. Srinivasan, K., Bartlett, M.G.: Analysis of methylphenidate and its metabolite ritalinic acid in monkey plasma by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14, 619–923 (2000)

    Article  Google Scholar 

  15. Sun, D.-Z., Li, L., Qiu, X.-M., Liu, F., Yin, B.-L.: Isothermal titration calorimetry and 1H NMR studies on host–guest interaction of paeonol and two of its isomers with β-cyclodextrin. Int. J. Pharm. 316, 7–13 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. Buckton, G., Beezer, A.: A calorimetric study of powder surface energetics. Int. J. Pharm. 41, 139–145 (1988)

    Article  CAS  Google Scholar 

  17. Jacobson, A.M., Casassa, Z.: Micropore filling of supercritical NO on Cu-doped iron oxide dispersed activated carbon fibers. J. Colloid. Interface Sci. 142, 489 (1991)

    Article  Google Scholar 

  18. Bai, G.-Y., Wang, Y.-J., Yan, H.-K., Robert, T.K., Kwak, J.C.T.: Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. J. Phys. Chem. B 106, 2153–2159 (2002)

    Article  CAS  Google Scholar 

  19. Gómez-Oreíllana, I., Hallén, D.: The thermodynamics of the binding of the benzene to β-cyclodextrin in aqueous solution. Thermochim. Acta 221, 183–193 (1993)

    Article  Google Scholar 

  20. Sun, D.-Z., Wang, S.-B., Wei, X.-L., Yin, B.-L.: A calorimetric study of β-cyclodextrin with 3-alkoxyl-2-hydroxypropyl trimethylammonium bromides in aqueous solutions. J. Chem. Thermodyn. 37, 431–436 (2005)

    Article  CAS  Google Scholar 

  21. Sun, D.-Z., Wang, S.-B., Song, M.-Z., Wei, X.-L., Yin, B.-L.: A calorimetric study of host–guest complexes of α-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solutions. J. Solution Chem. 34, 701–712 (2005)

    Article  CAS  Google Scholar 

  22. Frank, H.S., Evans, M.W.: Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)

    Article  CAS  Google Scholar 

  23. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  PubMed  CAS  Google Scholar 

  24. Fernandes, C.M., Caralho, R.A., Pereira da, C.S., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin and triaxetyl–β-cyclodextrin in solution structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 18, 285–296 (2003)

    Article  PubMed  CAS  Google Scholar 

  25. Tong, L.-H.: Cyclodextrin Chemistry—Foundation and Application. Science Press, Beijing (2001)

    Google Scholar 

  26. Ventura, C.A., Puglisi, G., Zappalà, M., Mazzone, G.: A physico-chemical study on the interaction between papaverine and natural and modified β-cyclodextrins. Int. J. Pharm. 160, 163–172 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Zhi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, XK., Zhu, LY., Li, L. et al. Host–Guest Complexation of β-, γ-Cyclodextrin with Alkyl Trimethyl Ammonium Bromides in Aqueous Solution. J Solution Chem 36, 643–650 (2007). https://doi.org/10.1007/s10953-007-9132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9132-7

Keywords

Navigation