Skip to main content
Log in

Study of Effect of Bended Graphene on Its Magnetoresistance and Spin Filtration

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) is used to investigate the spin-dependent quantum transport through bended graphene. Bending results in reduced bandgap in graphene and affects the spin transport by increasing current in parallel configuration (PC) resulting in an increase in magnetoresistance (MR). In antiparallel configuration (APC), bending limits the spin-down current, which results in higher magnetoresistance at all biases. In bended graphene, the magnetoresistance obtained is higher than the MR obtained in pristine and twisted graphene-based structure. High spin filtration for PC and APC is observed in the case of bended graphene as compared with pristine and twisted graphene. However, pristine graphene gives better spin filtration compared with twisted graphene at low voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yao, K., Min, Y., Liu, Z., Cheng, H., Zhu, S., Gao, G.Y.: First-principles study of transport of V doped boron nitride nanotube. Phys. Lett. A 372(34), 5609–5613 (2008)

    Article  ADS  MATH  Google Scholar 

  2. Titus E, Krishna R, Grácio J, Singh M., Ferreira A.L., Dias R.G: Carbon nanotube based magnetic tunnel junctions (MTJs) for spintronics spplication. In: Electronic Properties of Carbon Nanotube. InTech (2011), https://doi.org/10.5772/16539

  3. Cobas, E, Friedman, A., van’t Erve, O.M., Robinson, J., Jonker, B.T.: Graphene based magnetic tunnel junction. IEEE Trans. Magn. 49(7), 4343–4346 (2013)

    Article  ADS  Google Scholar 

  4. Li W., Xue L., Abruna H.D., Ralph D.C.: Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Phys. Rev. B 89(18), 184418(1)–184418(5) (2014)

    ADS  Google Scholar 

  5. Semenov Y.G, Kim K.W., Zavada J.M: Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91(15), 153105(1)–153105(3) (2007)

    Article  ADS  Google Scholar 

  6. Kheirabadi, N., Shafiekhani, A., Fathipour, M.: Review on graphene spintronic, new land for discovery. Superlattice. Microstruct. 74, 123–145 (2014)

    Article  ADS  Google Scholar 

  7. Choudhary, S., Goyal, R.: First-principles study of spin transport in CrO2–graphene–CrO2 magnetic tunnel junction. J. Supercond. Nov. Magn. 29, 139–143 (2016)

    Article  Google Scholar 

  8. QuantumWise A/S: Atomistix. www.quantumwise.com

  9. Brandbyge, M., Mozos, J.L, Ordejón, P., Taylor, J., Stokbro, K: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401(1)–165401(17) (2002)

    Article  ADS  Google Scholar 

  10. Taylor, J., Guo, H., Wang, J: Ab initio modelling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63(24), 245407(1)–245407(13) (2001)

    Article  ADS  Google Scholar 

  11. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14(11), 2745–2779 (2002)

    Article  ADS  Google Scholar 

  12. Nowak, J., Rauluszkiewicz, J.: Spin dependent electron tunneling between ferromagnetic films. J. Magn. Magn. Mater. 109(1), 79–90 (1992)

    Article  ADS  Google Scholar 

  13. Choudhary, S., Qureshi, S.: Theoretical study on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 375(38), 3382–3385 (2011)

    Article  ADS  Google Scholar 

  14. Poklonski, N.A., Ratkevich, S.V., Vyrko, S.A., Kislyakov, E.F., Bubel, O.N., Popov, A.M., Lozovik, Y.E., Hieu, N.N., Viet, N.A.: Structural phase transition and bandgap of uniaxially deformed (6, 0) carbon nanotube. Chem. Phys. Lett. 545, 71–77 (2012)

    Article  ADS  Google Scholar 

  15. Meena, S., Choudhary, S.: Enhancing TMR and spin-filtration by using out-of-plane graphene insulating barrier in MTJs. Phys. Chem. Chem. Phys. 19(45), 17765–17772 (2017)

    Article  Google Scholar 

  16. Meena S., Choudhary S: Spin transport in carbon nanotubes bundles: an ab-initio study. Phys. Lett. A, in press (2017)

  17. Chakraverty, M., Kittur, H.M., Arun Kumar, P.: First principle simulations of various magnetic tunnel junctions for applications in magnetoresistive random access memories. IEEE Trans. Nanotechnol. 12(6), 971–977 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Choudhary, S. & Meena, S. Study of Effect of Bended Graphene on Its Magnetoresistance and Spin Filtration. J Supercond Nov Magn 31, 2753–2758 (2018). https://doi.org/10.1007/s10948-017-4477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4477-7

Keywords

Navigation