Skip to main content

Advertisement

Log in

Porous walnut-like Mn2O3 anode derived from the waste graphene production effluent

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

According to the idea of the circular economy, various wastes should be reasonably managed and recycled for the achievement of the carbon peak and carbon neutralization (double carbon targets). For this purpose, Mn2+ in the waste graphene production effluent was firstly extracted in the form of Mn2O3 powder by the chemical precipitation and the subsequent calcination in air for the different times of 0.5 h, 2 h and 4 h, and the resultant samples were marked as Mn2O3-0.5 h, Mn2O3-2 h, Mn2O3-4 h, respectively. The removal rate and recovery rate of Mn2+ was calculated as about 99.9% and 92.6%, respectively. Furthermore, the effect of the calcination time on the morphology, structure and Li-storage performance of Mn2O3 powder was also further investigated. The results showed that the crystallinity of Mn2O3 increased with the increase of the calcination time, while the walnut-like morphology underwent a process from the integrity to the collapse. Resultantly, 2 h was an optimal calcination time, and Mn2O3-2 h powder exhibited a porous walnut-like morphology with the mean particle size of about 1.0 μm and the largest surface area. Furthermore, Mn2O3-2 h anode delivered the best electrochemical Li-storage performances. For example, the reversible discharge capacity of Mn2O3-2 h anode was about 466 mAh/g for 100 cycles at 1.0 A/g, higher than those of Mn2O3-0.5 h anode and Mn2O3-4 h anode. Obviously, such efforts provide a new strategy for the recovery of graphene production effluent, which may promote the development of the circular economy and the achievement of the double carbon targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.Q. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami, J. Lu, K. Amine, Commercialization of lithium battery technologies for electric vehicles. Adv. Energ. Mater. 9(27), 1–25 (2019)

    Article  CAS  Google Scholar 

  2. J. Baars, T. Domenech, R. Bleischwitz, H.E. Melin, O. Heidrich, Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4(1), 71–79 (2020)

    Article  Google Scholar 

  3. H.S. Kristensen, M.A. Mosgaard, A review of micro level indicators for a circular economy-moving away from the three dimensions of sustainability? J. Clean. Prod. 243, 1–19 (2019)

    Google Scholar 

  4. Q.Y. Chen, Y. Yao, X.Y. Li, J. Lu, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process. Eng. 26, 289–300 (2018)

    Article  Google Scholar 

  5. W. Xiang, X.Y. Zhang, J.J. Chen, W.X. Zou, F. He, X. Hu, D.C.W. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: a critical review. Chemosphere 52, 1–58 (2020)

    Google Scholar 

  6. A.S. Ayansina, O.O. Babalola, A New Strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Env. Res. Pub. He. 14(1), 1–16 (2017)

    Google Scholar 

  7. N. Sarwar, M. Imran, M.R. Shaheen, W. Ishaque, M.A. Kamran, A. Matloob, A. Rehim, S. Hussain, Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171, 710–721 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review. Membranes 10(5), 89–117 (2020)

    Article  CAS  Google Scholar 

  9. V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment of textile industry effluent—a review. J. Environ. Manage. 128, 949–963 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. K.W. Shen, L. Li, J.Q. Wang, Circular economy model for recycling waste resources under government participation: a case study in industrial waste water circulation in China. Techno. Econ. Dev. Eco. 26(1), 21–47 (2019)

    Article  Google Scholar 

  11. F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92(3), 407–418 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. H.Y. Hou, J. Lan, J. Zhu, J.K. Li, Extraction of tetrahedral CuCl anode from the waste copper etchant and surface modification with graphene quantum dots. Ionics 27(10), 4383–4391 (2021)

    Article  CAS  Google Scholar 

  13. X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. P. Li, X. Zhen, L. Zheng, Y.Y. Wei, H.Y. Sun, Z. Li, X.L. Zhao, G. Chao, An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commum. 6, 1–9 (2015)

    Google Scholar 

  15. J.F. Li, Y.D. Jia, R.S. Dong, R. Huang, P.D. Liu, X.Y. Li, Z.Y. Wang, G.D. Liu, Z.J. Chen, Advances in the mechanisms of plant tolerance to manganese toxicity. Int. J. Mol. Sci. 20(20), 1–15 (2019)

    Google Scholar 

  16. W.F. Wang, X.W. Cui, W.X. Chen, D.G. Lvey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011)

    Article  Google Scholar 

  17. K. Zhang, X.P. Han, Z. Hu, X.L. Zhang, Z.L. Tao, Chen J, Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44(3), 699–728 (2015)

    Article  PubMed  Google Scholar 

  18. K.A. Stoerzinger, M. Risch, B.H. Han, Y. Shao-Horn, Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5(10), 6021–6031 (2015)

    Article  CAS  Google Scholar 

  19. Y.F. Deng, L.N. Wan, Y. Xie, X.S. Qin, G.H. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4(45), 23914–23935 (2014)

    Article  CAS  Google Scholar 

  20. F. Wang, T.F. Li, Y. Fang, Z.J. Wang, J.F. Zhu, Heterogeneous structured Mn2O3/Fe2O3 composite as anode material for high performance lithium ion batteries. J. Alloys Compd. 857, 1–29 (2020)

    Google Scholar 

  21. Y.Q. Tang, Y.C. Lu, A comparative electrochemical investigation and an effective promotion towards electrochemical performance of MnCO3 aggregates. Chem. Eng. J. 360, 553–561 (2019)

    Article  CAS  Google Scholar 

  22. D.M. Dai, J.X. Qiu, H.Y. Hou, X.J. Wang, S.Y. Li, B.B. Cao, X.X. Zhou, D.H. Liu, B. Wang, B. Li, P2-layered Na0.5Li0.07Mn0.61Co0.16Ni0.16O2 cathode boosted Na-storage properties via rational subgroup element doping. J. Mater. Chem. A. 9(34), 18272–18279 (2021)

    Article  CAS  Google Scholar 

  23. H.Y. Hou, W. Lei, K. Meng, J.X. Qiu, J. Zhu, The reutilization of expired waste zincgluconate for ZnO/C anode in lithium-ion battery. Surf. Innov. 8(1–2), 55–64 (2020)

    Article  Google Scholar 

  24. Y.C. Li, Z. Xu, H.Q. Ma, A.S. Hursthouse, Removal of manganese(II) from acid mine wastewater: a review of the challenges and opportunities with special emphasis on Mn-oxidizing bacteria and microalgae. Water 11(12), 1–24 (2019)

    PubMed  PubMed Central  Google Scholar 

  25. H.W. Liu, One-pot synthesis and characterization of MnCO3 hierarchical micro/nano twin-spheres with superior lithium storage performances. J. Mater. Sci. Mater. El. 29(12), 10117–10122 (2018)

    Article  CAS  Google Scholar 

  26. Y. Fang, Y.H. Wang, F. Wang, J.F. Zhu, 3D structured Mn2O3 synthesized using tween surfactant: influence on the morphology and oxygen reduction catalytic performance. CrystEngComm 21(3), 420–429 (2019)

    Article  CAS  Google Scholar 

  27. S. Ruvinov, L. Wang, B. Ruan, O. Almog, G. Gilliland, E. Eisenstein, P.N. Bryan, Engineering the independent folding of the subtilisin BPN′ prodomain: analysis of two-state folding versus protein stability. Biochemistry 36(34), 10414–10421 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. J. Zhang, D.G. Tang, H. Liu, H.M. Yang, Preparation of dimanganese trioxide by decomposing manganese carbonate under high temperature. Shandong Chem. Ind. 42(4), 1–4 (2013)

    Google Scholar 

  29. X.Y. Han, Y.P. Cui, H.W. Liu, Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. J. Alloys Compd. 814, 1–8 (2020)

    Article  CAS  Google Scholar 

  30. F. Wang, B. Wang, J.X. Li, B. Wang, Y. Zhou, D.L. Wang, H.K. Liu, S.X. Dou, Prelithiation: a cucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15(2), 2197–2218 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. Z.C. Bai, Y.H. Zhang, Y.W. Zhang, C.L. Guo, B. Tang, D. Sun, MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery. J. Mater. Chem. A 3(10), 5266–5269 (2015)

    Article  CAS  Google Scholar 

  32. L.K. Zhou, X.H. Kong, M. Gao, F. Lian, B.J. Li, Z.F. Zhou, H.Q. Cao, Hydrothermal fabrication of MnCO3@rGO composite as an anode material for high-performance lithium ion batteries. Inorg. Chem. 53(17), 9228–9234 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. K.W. Zeng, X.H. Li, Z.X. Wang, H.J. Guo, J.X. Wang, T. Li, W. Pan, K.M. Shih, Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochim. Acta. 247, 795–802 (2017)

    Article  CAS  Google Scholar 

  34. L. Bigiani, C. Maccato, G. Carraro, A. Gasparotto, C. Sada, E. Comoni, D. Barreca, Tailoring vapor phase fabrication of Mn3O4 nanosystems: from synthesis to gas sensing applications. ACS Appl. Nano Mater. 1(6), 2962–2970 (2018)

    Article  CAS  Google Scholar 

  35. S. Nagamuthu, K.S. Ryu, MOF-derived microstructural interconnected network porous Mn2O3/C as negative electrode material for asymmetric supercapacitor device. CrystEngComm 21(9), 1442–1451 (2019)

    Article  CAS  Google Scholar 

  36. X.Q. Chen, H.B. Lin, X.W. Zheng, X. Cai, P. Xia, Y.M. Zhu, X.P. Li, W.S. Li, Fabrication of core-shell porous nanocubic Mn2O3@TiO2 as a high-performance anode for lithium ion batteries. J. Mater. Chem. A. 3(35), 18198–18206 (2015)

    Article  CAS  Google Scholar 

  37. S.M. Li, B. Li, Y.T. Zhong, Z.H. Pan, M.Q. Xu, Y.C. Qiu, Q.M. Huang, S.W. Li, Mn2O3@C yolk-shell nanocubes as lithium-storage anode with suppressed surface electrolyte decomposition. Mater. Chem. Phys. 222, 256–262 (2019)

    Article  CAS  Google Scholar 

  38. Y.J. Zhang, Y. Yan, X.Y. Wang, G. Li, D.R. Deng, L. Jiang, C.Y. Shu, C.R. Wang, Facile synthesis of porous Mn2O3 nanoplates and their electrochemical behavior as anode materials for lithium ion batteries. Chem. Eur. J. 20(20), 6126–6130 (2013)

    Article  CAS  Google Scholar 

  39. S.Z. Huang, J. Jin, Y. Cai, Y. Li, Z. Deng, J.Y. Zeng, C. Wang, T. Hasan, B.L. Su, Three-dimensional (3D) bicontinuous hierarchically porous Mn2O3 single crystals for high performance lithium-ion batteries. Sci. Rep. 5(1), 1–12 (2014)

    Google Scholar 

  40. X.G. Han, X. Han, R. Li, L.Q. Sun, K. Lu, M.Y. Wu, Y.X. Wu, Y.X. Zhu, X.S. Zhao, Porous Mn2O3 microcubes with exposed 001 facets as electrode for lithium ion batteries. New J. Chem. 40(7), 6030–6035 (2016)

    Article  CAS  Google Scholar 

  41. J. Lan, H.Y. Hou, K. Meng, M.M. Feng, J.K. Li, The recovery of expired ferrous gluconate and spent Li foils into high performance straw-bundle-like α-LiFeO2/C cathode. Electrochim. Acta 390, 1–10 (2021)

    Article  CAS  Google Scholar 

  42. J.J. Chen, K. Yang, H.Y. Yu, T. Shah, Q.Y. Zhang, B.L. Zhang, Highly monodisperse dumbbell-like yolk-shell manganese monoxide/carbon microspheres for lithium storage and their lithiation evolution. Carbon 170, 37–48 (2020)

    Article  CAS  Google Scholar 

  43. Y.Z. Liu, Z.H. Yang, Intercalation of sulfate anions into a Zn-Al layered double hydroxide: their synthesis and application in Zn-Ni secondary batteries. RSC Adv. 6(73), 68584–68591 (2016)

    Article  CAS  Google Scholar 

  44. Y.C. Zhang, J.T. Li, Z.G. Wu, L. Huang, S.G. Sun, Synthesis of hierarchical spindle-like Mn2O3 for lithium ion batteries with enhanced lithium storage properties. J. Alloys Compd. 721, 229–235 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported the 19th Young Academic and Technical Leaders of Yunnan Province (1097-10978240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Li, J., Lan, J. et al. Porous walnut-like Mn2O3 anode derived from the waste graphene production effluent. J Porous Mater 29, 837–847 (2022). https://doi.org/10.1007/s10934-022-01216-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01216-2

Keywords

Navigation