Skip to main content

Advertisement

Log in

Preparation of activated carbon derived from biomass and its application in lithium–sulfur batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The most suitable activated carbon from three kinds of biomass wastes: walnut shell, peanut shell and pistachio hull is chosen to prepare the activated carbon–sulfur composites (AC-S) for rechargeable lithium–sulfur (Li–S) battery, due to the advantages of a relatively cheap, simple and non-toxic compositing progress. It indicates that the activated carbon (ACpe) derived from peanut shell owns flat, narrow and long shape macroporous structure with large micropores on its surface and is more suitable for the reaction in the Li–S battery. The ACpe/S composite containing about 57 wt% sulfur (sulfur loading of 0.83 mg cm− 2) shows a best initial discharge capacity of 943 mAhg− 1 at the rate of 0.2 C. It still retains a comparably high specific capacity of 619 mAh g− 1 with a coulombic efficiency of 95% after 100 cycles. This fact implies that the inherent flat pore construction of ACpe is beneficial for keep cycling stability for the lithium sulfur battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  CAS  Google Scholar 

  2. A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium¨Csulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. E. Peled, Lithium–Sulfur Battery: evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 136, 1621–1625 (1989)

    Article  CAS  Google Scholar 

  4. M.K. Song, E.J. Cairns, Y. Zhang, Lithium–sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5, 2186–2204 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  CAS  Google Scholar 

  6. X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010)

    Article  CAS  Google Scholar 

  7. L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013)

    Article  CAS  Google Scholar 

  8. Z. Lin, Z. Liu, W. Fu, N.J. Dudney, C. Liang, Lithium Polysulfidophosphates: a Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium–Sulfur Batteries. Angew. Chem. 125, 7608–7611 (2013)

    Article  Google Scholar 

  9. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Rechargeable Lithium–Sulfur Batteries, Chem. Rev. 114, 11751–11787 (2014)

    Article  CAS  Google Scholar 

  10. D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W.C. Li, High Sulfur Loading Cathodes Fabricated Using Peapodlike, Large Pore Volume Mesoporous Carbon for Lithium–Sulfur Battery. ACS Appl. Mater. Interfaces. 5, 2208–2213 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu, G. Du, Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries. Electrochim. Acta 116, 146–151 (2014)

    Article  CAS  Google Scholar 

  12. Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc. 151 (2004) A1969–A1976

    Article  CAS  Google Scholar 

  13. T. Yim, M.S. Park, J.S. Yu, K.J. Kim, K.Y. Im, J.H. Kim, G. Jeong, Y.N. Jo, S.G. Woo, K.S. Kang, I. Lee, Y.J. Kim, Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013)

    Article  CAS  Google Scholar 

  14. C. Zu, A. Manthiram, Hydroxylated Graphene–Sulfur Nanocomposites for High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 3, 1008–1012 (2013)

    Article  CAS  Google Scholar 

  15. X. He, J. Ren, L. Wang, W. Pu, C. Jiang, C. Wan, Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. J. Power Sources 190, 154–156 (2009)

    Article  CAS  Google Scholar 

  16. Z. Gao, Y. Zhang, N. Song, X. Li, Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 5(2), 69–88 (2017)

    Article  CAS  Google Scholar 

  17. Y. Zhang, Z. Gao, N. Song, X. Li, High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. Electrochim. Acta 222, 1257–1266 (2016)

    Article  CAS  Google Scholar 

  18. L. Zhou, T. Huang, A. Yu, Three-dimensional flower-shaped activated porous Carbon–Sulfur composites as cathode materials for Lithium–Sulfur batteries. ACS Sustain. Chem. Eng. 2, 2442–2447 (2014)

    Article  CAS  Google Scholar 

  19. M.K. Song, Y. Zhang, E.J. Cairns, A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett. 13, 5891–5899 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. X. Tao, J. Du, Y. Li, Y. Yang, Z. Fan, Y. Gan, X. Li, TaC nanowire/activated carbon microfiber hybrid structures from bamboo fibers. Adv. Energy Mater. 1(4), 534–539 (2011)

    Article  CAS  Google Scholar 

  21. Z. Gao, N. Song, X. Li, Microstructural design of hybrid CoO@ NiO and graphene nano-architectures for flexible high performance supercapacitors. J. Mater. Chem. A 3(28), 14833–14844 (2015)

    Article  CAS  Google Scholar 

  22. Z. Gao, N. Song, Y. Zhang, Y. Schwab, J. He, X. Li, Carbon nanotubes derived from yeast-fermented wheat flour and their energy storage application. ACS Sustain. Chem. Eng. 6(9), 11386–11396 (2018)

    Article  CAS  Google Scholar 

  23. S. Uçar, M. Erdem, T. Tay, S. Karagöz, Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl. Surf. Sci. 255, 8890–8896 (2009)

    Article  CAS  Google Scholar 

  24. C.D. Blasi, C. Branca, A. Galgano, Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energy Fuels 22, 663–670 (2007)

    Article  CAS  Google Scholar 

  25. C. Liang, N.J. Dudney, J.Y. Howe, Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724–4730 (2009)

    Article  CAS  Google Scholar 

  26. M. Gao, X. Xiong, W. Wang, S. Zhao, C. Li, H. Zhang, Z. Yu, Y. Huang, Discharge–charge process of the porous sulfur/carbon nanocomposite cathode for rechargeable lithium–sulfur batteries. J. Power Sources 248, 1149–1155 (2014)

    Article  CAS  Google Scholar 

  27. X. Gu, Y. Wang, C. Lai, J. Qiu, S. Li, Y. Hou, W. Martens, N. Mahmood, S. Zhang, Microporous bamboo biochar for lithium–sulfur batteries, Nano Res. 8, 1–11

  28. Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang, Y. Xia, … J. Tu, Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv.Energy Mater. 8(1), 1701110 (2018)

    Article  CAS  Google Scholar 

  29. Z.H. Chen, X.L. Du, J.B. He, F. Li, Y. Wang, Y.L. Li, S. Xin, Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9(39), 33855–33862 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. J. Shim, K.A. Striebel, E.J. Cairns, The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149, A1321–A1325 (2002)

    Article  CAS  Google Scholar 

  31. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, J. Liu, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Zhang, Z. Gao, X. Li, Capillarity composited recycled paper/graphene scaffold for lithium–sulfur batteries with enhanced capacity and extended lifespan. Small 13(42), 1701927 (2017)

    Article  CAS  Google Scholar 

  34. S.E. Cheon, K.S. Ko, J.H. Cho, S.W. Kim, E.Y. Chin, H.T. Kim, Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. J.Electrochem. Soc. 150, A800–A805 (2003)

    Article  CAS  Google Scholar 

  35. Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14, 4821–4827 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. B. Zhang, X. Qin, G. Li, X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010)

    Article  CAS  Google Scholar 

  37. J. Gao, M.A. Lowe, Y. Kiya, H.c.D. Abrun a, Effects of liquid electrolytes on the charge¨Cdischarge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J.Phys. Chem. C 115, 25132–25137 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11372267, 11102176 and 11602213), the National 863 Plan of China (SS2013AA032202) and the Graduate Innovation Program of Hunan Province (CX2013B259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xia, P., Lei, W. et al. Preparation of activated carbon derived from biomass and its application in lithium–sulfur batteries. J Porous Mater 26, 1325–1333 (2019). https://doi.org/10.1007/s10934-019-00720-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00720-2

Keywords

Navigation