Skip to main content

Advertisement

Log in

An ostracod-based record of paleoecological conditions during MIS6 and MIS5, from Lake Chalco, Basin of Mexico

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A sediment record from Lake Chalco, Basin of Mexico, revealed the presence of two endemic ostracod species during the latter part of Marine Isotope Stages (MIS) 6 (146–130 ka) and MIS5 (130–72 ka), namely Candona alchichica and Limnocytherina axalapasco. Higher abundance of C. alchichica was found during MIS6, when prevailing conditions were cold, lake waters were fresh, and relatively deep bottom waters were anoxic. The species is typically associated with saline environments today, consistent with its presence in MIS5 sediments. The Chalco record, however, reveals that it coexisted with freshwater diatom species during MIS6. Thus, we suggest that C. alchichica had a wider salinity tolerance, ranging from freshwater to more saline environments. Examination of MIS5 substages provides further insights into ostracod species responses to changing lake conditions. During MIS5e, the lake water level declined and salinity and dissolved oxygen in the water column increased, thereby favouring L. axalapasco productivity, whereas C. alchichica productivity decreased. Enhanced runoff and lower than average evaporation during MIS5d coincided with the increasing abundance of C. alchichica, suggesting a period of relatively high lake level and more dilute waters. These environmental conditions, however, changed during MIS5c when lake stage dropped once again and L. axalapasco abundance increased. Shallow conditions during this substage were optimal for L. axalapasco. Subsequently, as the lake level continued to decline during MIS5b, both ostracod species disappeared from the sediment record. Finally, during MIS5a, runoff increased and both ostracod species reappeared in the record, with L. axalapasco dominating, suggesting another period of lake level recovery. Increased evaporation rates during the last part of this substage (75–72 cal ka BP) may have led to disappearance of ostracods from the sediment record. Overall, during MIS5, we detected higher L. axalapasco, which represent relatively shallow lake conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Ortega-Guerrero et al. (2017, 2020)

Fig. 3
Fig. 4
Fig. 5

source based on the C/N ratio. Asterisks represent the presence of L. axalapasco with developed nodes

Fig. 6

Similar content being viewed by others

References

  • Abe K (1983) Population structure of Keijella bisanensis (Okubo) (Ostracoda, Crustacea)—an inquiry into how far the population structure will be preserved in the fossil record. J Fac Sci Univ Tokyo 20:443–488

    Google Scholar 

  • Abe K (1990) What the sex ratio tells us: a case from marine ostracods. In: Ostracoda and global events. Springer, Dordrecht, pp 175–185

  • Alcocer J (2021). In: Alcocer J (ed) Lake Alchichica limnology: the uniqueness of a Tropical Maar Lake. Springer, Cham

    Google Scholar 

  • Arce J, Macías J, Vázquez-Selem L (2003) The 10.5 ka Plinian eruption of Nevado de Toluca Volcano, Mexico: Stratigraphy and hazard implications. Geol Soc Am Bull 115:230–248

    Article  Google Scholar 

  • Avendaño D, Caballero M, Vázquez G (2021) Ecological distribution of Stephanodiscus niagarae Ehrenberg in central Mexico and niche modeling for its last glacial maximum habitat suitability in the Nearctic realm. J Paleolimnol 66:1–14

    Article  Google Scholar 

  • Avendaño D, Caballero M, Ortega-Guerrero B, Lozano-García S, Brown E (2018) Environmental conditions at the end of the Isotopic Stage 6 (IS 6: >130000 years) in the center of Mexico: characterization of a section of laminated sediments from Lake Chalco. Rev Mex Cienc Geol 35:168–178

    Google Scholar 

  • Blaauw M, Christen J (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Article  Google Scholar 

  • Bogotá R, Groot M, Hooghiemstra H, Lourens L, Van der Linden M, Berrio J (2011) Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quat Sci Rev 30:3321–3337

    Article  Google Scholar 

  • Bosmans J, Hilgen F, Tuenter E, Lourens L (2015) Obliquity forcing of low-latitude climate. Clim past 11:1335–1346

    Article  Google Scholar 

  • Bradbury JP (1989) Late Quaternary lacustrine paleoenvironments in the Cuenca de Mexico. Quat Sci Rev 8:75–100

    Article  Google Scholar 

  • Bradbury JP (1997) A diatom record of climate and hydrology for the past 200 ka from Owens Lake, California with comparison to other Great Basin records. Quat Sci Rev 16:203–219

    Article  Google Scholar 

  • Brown ET, Caballero M, Cabral E, at al, (2019) Scientific drilling of Lake Chalco, Basin of Mexico (MexiDrill). Sci Drill 26:1–15

    Article  Google Scholar 

  • Brugam RB (1983) The relationship between fossil diatom assemblages and limnological conditions. Hydrobiologia 98:223–235

    Article  Google Scholar 

  • Caballero M, Lozano-García S, Ortega-Guerrero B, Correa-Metrio A (2019) Quantitative estimates of orbital and millennial scale climatic variability in central Mexico during the last ∼ 40,000 years. Quat Sci Rev 205:62–75

    Article  Google Scholar 

  • Cárdenes-Sandí GM, Shadik CR, Correa-Metrio A, Gosling WD, Cheddadi R, Bush MB (2019) Central American climate and microrefugia: a view from the last interglacial. Quat Sci Rev 205:224–233

    Article  Google Scholar 

  • Cohen AC, Morin JG (1990) Patterns of reproduction in ostracodes: a review. J Crustac Biol 10:184–212

    Article  Google Scholar 

  • Cohuo-Durán S, del Carmen HM, Pérez L, Alcocer J (2017) Candona alchichica (Podocopida: Candonidae), a new ostracod species from saline, tropical Lake Alchichica, Mexico. J Limnol 76:68–84

    Google Scholar 

  • Cohuo-Durán S, Pérez L, Karanovic I (2014) On Limnocytherina axalapasco, a new freshwater ostracod (Podocopida: Limnocytheridae) from Mexican crater lakes. Rev Biol Trop 62:29–46

    Article  Google Scholar 

  • De Deckker P (2002) Ostracod palaeoecology. Washington DC American Geophysical Union. Geophys Monogr 131:121–134

    Google Scholar 

  • Edwards S, McKirdy DM, Bone Y, Gell PA, Gostin VA (2006) Diatoms and ostracods as Mid-Holocene palaeoenvironmental indicators, North Stromatolite Lake, Coorong National Park, South Australia. Aust J Earth Sci 53:651–663

    Article  Google Scholar 

  • Fernandes-Martins MJ (2019) Adult sex-ratio in ostracods and its implications for sexual selection. Invertebr Reprod Dev 63:178–188

    Article  Google Scholar 

  • Forester RM (1986) Determination of the dissolved anion composition of ancient lakes from fossil ostracodes. Geology 14:796–799

    Article  Google Scholar 

  • Frenzel P, Schulze I, Pint A (2012) Noding of Cyprideis torosa valves (Ostracoda)—a proxy for salinity? New data from field observations and a long-term microcosm experiment. Int Rev Hydrobiol 97:314–329

    Article  Google Scholar 

  • Fritz SC, Juggins S, Battarbee RW (1993) Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can J Fish Aquat 50:1844–1856

    Article  Google Scholar 

  • García-Palomo A, Macías JL, Arce JL, Capra L, Garduño VH, Espíndola JM (2002) Geology of the Nevado de Toluca Volcano and surrounding areas, Central Mexico. Geol Soc Am Bull 89:1–26

    Google Scholar 

  • Gobierno de Chalco (2019–2021) Plan de desarrollo municipal. https://gobiernodechalco.gob.mx/images/gacetas/2019/gaceta11.pdf

  • Julius ML, Stoermer EF, Taylor CM, Schelske CL (1998) Local extirpation of Stephanodiscus niagarae (Bacillariophyceae) in the recent limnological record of Lake Ontario. J Phycol 34:766–771

    Article  Google Scholar 

  • Kamiya T (1988) Different sex-ratios in two recent species of Loxoconcha (Ostracoda). Senckenberg Lethaea 68:337–345

    Google Scholar 

  • Kappeler PM (2017) Sex roles and adult sex ratios: insights from mammalian biology and consequences for primate behaviour. Philos Trans R Soc Lond B 372:20160321

    Article  Google Scholar 

  • Kaufman DS, Bright J, Dean WE, Rosenbaum JG, Moser K, Anderson RS, Colman SM, Heil CW, Jiménez-Moreno G, Reheis MC, Simmons KR (2009) A quarter-million years of paleoenvironmental change at Bear Lake, Utah and Idaho. Paleoenvironments of Bear Lake, Utah and Idaho, and its catchment. Geol Soc Am Spec Pap 450:311–351

    Google Scholar 

  • Keyser D (2005) Histological peculiarities of the noding process in Cyprideis torosa (Jones) (Crustacea, Ostracoda). Hydrobiologia 538:95–106

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:17706

    Article  Google Scholar 

  • Lachniet MS, Denniston RF, Asmerom Y, Polyak VJ (2014) Orbital control of western North America atmospheric circulation and climate over two glacial cycles. Nat Commun 5:1–8

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1003

    Google Scholar 

  • Lozano-Garcı́a MS, Ortega-Guerrero B, Caballero-Miranda M, Urrutia-Fucugauchi J, (1993) Late Pleistocene and Holocene paleoenvironments of Chalco Lake, central Mexico. Quat Res 40:332–342

    Article  Google Scholar 

  • Lozano-García S, Brown ET, Ortega B, Caballero M, Werne J, Fawcett PJ, Schwalb A, Valero-Garcés BL, Schnurrenberger D, O’Grady R, Stockhecke M (2017) Deep drilling at the Chalco lake: a technical report. Bol Soc Geol Mex 69:299–311

    Article  Google Scholar 

  • Lozano-García S, Ortega B, Roy PD, Beramendi-Orosco L, Caballero M (2015) Climatic variability in the northern sector of the American tropics since the latest MIS 3. Quat Res 84:262–271

    Article  Google Scholar 

  • Macario-Gonzalez L (2017) Environmental history of the last 400,000 years in the northern Neotropical region based on Lake Petén Itzá sediments. PhD Thesis, Technischen Universität Carolo-Wilhelmina

  • Magaña VO, Vázquez JL, Pérez JL, Pérez JB (2003) Impact of El Niño on precipitation in Mexico. Inst Geofís 42:313–330

    Google Scholar 

  • Martens K (1996) On Korannacythere gen. nov. (Crustacea, Ostracoda), a new genus of temporary pool limnocytherids from southern Africa, with the description of three new species and a generic reassessment of the Limnocytherinae. Bull Inst R Sci Nat Belg 66:51–72

    Google Scholar 

  • Martens K (1998) Sex and ostracods: a new synthesis. In: Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, pp 295–321

  • Martens K (2000) Factors affecting the divergence of mate recognition systems in the Limnocytherinae (Crustacea, Ostracoda). Hydrobiologia 419:83–101

    Article  Google Scholar 

  • Martínez-Abarca LR, Lozano-García S, Ortega-Guerrero B, Chávez-Lara CM, Torres-Rodríguez E, Caballero M, Brown ET, Sosa-Nájera S, Acosta-Noriega C, Sandoval-Ibarra V (2021) Environmental changes during MIS6–3 in the Basin of Mexico: a record of fire, lake productivity history and vegetation. J South Am Earth Sci 109:103231

    Article  Google Scholar 

  • Martínez-Abarca LR, Lozano-García S, Ortega-Guerrero B, Caballero-Miranda M (2019) Incendios y actividad volcánica: historia de fuego en la cuenca de México en el Pleistoceno tardío con base en registros de material carbonizado en el lago de Chalco. Rev Mex Cienc Geol 36:259–269

    Article  Google Scholar 

  • McCormack J, Viehberg F, Akdemir D, Immenhauser A, Kwiecien O (2019) Ostracods as ecological and isotopic indicators of lake water salinity changes: the Lake Van example. Biogeosciences 16:2095–2114

    Article  Google Scholar 

  • Metcalfe S, Barron J, Davies S (2015) The Holocene history of the North American Monsoon: ‘known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity. Quat Sci Rev 120:1–27

    Article  Google Scholar 

  • Mooser F, Molina C (1990) Estratigrafía y estructuras del Valle de México. In: Ovando-Shelley E, González-Valencia F (ed) El subsuelo de la Cuenca de México y su relación con la ingeniería de cimentaciones a cinco años del sismo. Sociedad Mexicana de Mecánica de Suelos, pp 29–36

  • Namiotko T, Martins MJF (2008) Sex ratio of sub-fossil Ostracoda (Crustacea) from deep lake habitats in northern Poland. Palaeogeogr Palaeoclimatol Palaeoecol 264:330–337

    Article  Google Scholar 

  • Ortega-Guerrero B, Avendaño D, Caballero M, Lozano-García S, Brown ET, Rodríguez A, García B, Barceinas H, Soler AM, Albarrán A (2020) Climatic control on magnetic mineralogy during the Late MIS 6–Early MIS 3 in Lake Chalco, central Mexico. Quat Sci Rev 230:106163

    Article  Google Scholar 

  • Ortega-Guerrero B, Lozano-García S, Herrera-Hernández D, Caballero M, Beramendi-Orosco L, Bernal JP, Torres-Rodríguez E, Avendaño-Villeda D (2017) Lithostratigraphy and physical properties of lacustrine sediments of the last ca. 150 kyr from Chalco Basin, central México. J South Am Earth Sci 79:507–524

    Article  Google Scholar 

  • Pérez L, Correa-Metrio A, Cohuo S, González LM, Echeverría-Galindo P, Brenner M, Curtis J, Kutterolf S, Stockhecke M, Schenk F, Bauersachs T (2021) Ecological turnover in Neotropical freshwater and terrestrial communities during episodes of abrupt climate change. Quat Res 101:26–36

    Article  Google Scholar 

  • Pérez L, Lorenschat J, Bugja R, Brenner M, Scharf B, Schwalb A (2010) Distribution, diversity and ecology of modern freshwater ostracodes (Crustacea), and hydrochemical characteristics of Lago Petén Itzá, Guatemala. J Limnol 69:146–159

    Article  Google Scholar 

  • Pérez L, Lorenschat J, Massaferro J, Pailles C, Sylvestre F, Hollwedel W, Brandorff GO, Brenner M, Gerald I, Lozano MD, Scharf B (2013) Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics. Rev Biol Trop 61:603–644

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. https://www.R-project.org/

  • Raymo ME (1992) Global climate change: a three million year perspective. In: Start of a Glacial. Springer, Berlin, pp 207–223

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Rincón-Martínez D, Lamy F, Contreras S, Leduc G, Bard E, Saukel C, Blanz T, Mackensen A, Tiedemann R (2010) More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the Intertropical Convergence Zone in the eastern tropical Pacific. Paleoceanography 25:2210

    Article  Google Scholar 

  • Rivers TJ, Morin JG (2008) Complex sexual courtship displays by luminescent male marine ostracods. J Exp Biol 211:2252–2262

    Article  Google Scholar 

  • Roberts WH, Valdes PJ, Singarayer JS (2017) Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys Res Lett 44:6373–6382

    Article  Google Scholar 

  • Rossi V, Martorella A, Menozzi P (2013) Hatching phenology and voltinism of Heterocypris barbara (Crustacea: Ostracoda) from Lampedusa (Sicily, Italy). J Limnol 72:227–237

    Article  Google Scholar 

  • Schmidt MW, Spero HJ (2011) Meridional shifts in the marine ITCZ and the tropical hydrologic cycle over the last three glacial cycles. Paleoceanography 26:1206

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53

    Article  Google Scholar 

  • Servicio Meteorológico Nacional (SMN), México (2021) Estación 9051 Tlahuac (Ciudad de Mexico; 19° 15′ 46″ N, 99° 00′ 13″ W, 2,240 msnm). Normales climatológicas 1981–2010. https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL09051.TXT

  • Sigala I, Caballero M, Correa-Metrio A, Lozano-García S, Vázquez G, Pérez L, Zawisza E (2017) Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and environmental gradients. Bol Soc Geol Mex 69:313–370

    Article  Google Scholar 

  • Sosa-Ceballos G, Gardner JE, Siebe C, Macías JL (2012) A caldera-forming eruption ~ 14,100 14C yr bp at Popocatépetl Volcano, México: insights from eruption dynamics and magma mixing. J Volcanol Geotherm Res 213:27–40

    Article  Google Scholar 

  • Speiser DI, Lampe RI, Lovdahl VR, Carrillo-Zazueta B, Rivera AS, Oakley TH (2013) Evasion of predators contributes to the maintenance of male eyes in sexually dimorphic Euphilomedes ostracods (Crustacea). Integr Comp Biol 53:78–88

    Article  Google Scholar 

  • Székely T, Weissing FJ, Komdeur J (2014) Adult sex ratio variation: implications for breeding system evolution. J Evol Biol 27:1500–1512

    Article  Google Scholar 

  • Theriot E, Stoermer EF (1981) Some aspects of morphological variation in Stephanodiscus niagarae (Bacillariophyceae) 1. J Phycol 17:64–72

    Article  Google Scholar 

  • Theriot E, Stoermer EF (1984) Principal component analysis of variation in Stephanodiscus rotula and S. niagarae (Bacillariophyceae). Syst Bot 9:53–59

    Article  Google Scholar 

  • Torres-Rodríguez E, Lozano-García S, Roy P, Ortega B, Beramendi-Orosco L, Correa-Metrio A, Caballero M (2015) Last Glacial droughts and fire regimes in the central Mexican highlands. Quat Sci 30:88–99

    Article  Google Scholar 

  • Vilaclara G, Chávez M, Lugo A, González H, Gaytán M (1993) Comparative description of crater-lakes basic chemistry in Puebla State, Mexico. Int Verh Theor Angew Limnol 25:435–440

    Google Scholar 

  • Yarincik KM, Murray RW, Peterson LC (2000) Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al. Paleoceanography 15:210–228

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by UNAM DGAPA-PAPIIT IN103819 and by the US NSF (EAR-1462347). CMCL was awarded a Scholarship from DGAPA for her Postdoctoral Research at the Universidad Nacional Autónoma de Mexico. XRF core scanning was performed at the Large Lakes Observatory, University of Minnesota-Duluth. Special thanks to the authorities of the Ejido Tulyehualco for their support and access to the drilling site. Technical assistance was provided by Susana Sosa and Rodrigo Martínez-Abarca. Suggestions and comments of both reviewers, Associate Editor Maarten van Hardenbroek, and Co-Editor-in-Chief Mark Brenner are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Chávez-Lara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Lara, C.M., Lozano-García, S., Ortega-Guerrero, B. et al. An ostracod-based record of paleoecological conditions during MIS6 and MIS5, from Lake Chalco, Basin of Mexico. J Paleolimnol 67, 359–373 (2022). https://doi.org/10.1007/s10933-022-00237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-022-00237-w

Keywords

Navigation