Skip to main content

Advertisement

Log in

Paleolimnology in support of archeology: a review of past investigations and a proposed framework for future study design

  • D.G. Frey and E.S. Deevey Review
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We conducted a systematic review of 89 paleolimnological studies applied to archeological questions. Where we discuss the physical, chemical and biological sediment variables used in these studies in terms of their advantages and disadvantages as paleolimnological proxies for archeological studies. We make four key observations: (1) This field is rapidly growing, (2) More research is needed, (3) More standardization is required for future integrative analyses, and (4) More robust studies with multiple proxies are needed as the field grows. To address these challenges, we developed a framework to help researchers design paleolimnological studies in support of archeology. The framework includes standardized terminology of proxy characteristics and definition of a new term: orthogonality. This framework was then integrated with decision matrix analysis to build study scores that can be used to help researchers optimize their study design. This approach will help future researchers build more robust paleolimnology studies to more effectively complement independent archeological work. We also summarized new areas of archeology and chemistry that could be integrated with paleolimnology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott MB, Wolfe AP (2003) Intensive pre-Incan metallurgy recorded by lake sediments from the Bolivian Andes. Science 301:1893–1895. https://doi.org/10.1126/science.1087806

    Article  Google Scholar 

  • Albert B, Innes J, Blackford J, Taylor B, Conneller C, Milner N (2016) Degradation of the wetland sediment archive at Star Carr: an assessment of current palynological preservation. J Archaeol Sci Rep 6:488–495. https://doi.org/10.1016/j.jasrep.2016.03.010

    Article  Google Scholar 

  • Antoniades D, Michelutti N, Quinlan R, Blais JM, Bonilla S, Douglas MSV, Pienitz R, Smol JP, Vincent WF (2011) Cultural eutrophication, anoxia, and ecosystem recovery in Meretta Lake, High Arctic Canada. Limnol Oceanogr 56:639–650. https://doi.org/10.4319/lo.2011.56.2.0639

    Article  Google Scholar 

  • Argiriadis E, Battistel D, McWethy DB, Vecchiato M, Kirchgeorg T, Kehrwald NM, Whitlock C, Wilmshurst JM, Barbante C (2018) Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-30606-3

    Article  Google Scholar 

  • Bajard M, Etienne D, Quinsac S, Dambrine E, Sabatier P, Frossard V, Gaillard J, Develle AL, Poulenard J, Arnaud F, Dorioz JM (2018) Legacy of early anthropogenic effects on recent lake eutrophication (Lake Bénit, northern French Alps). Anthropocene 24:72–87. https://doi.org/10.1016/j.ancene.2018.11.005

    Article  Google Scholar 

  • Baker AG, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat Sci Rev 62:21–31. https://doi.org/10.1016/j.quascirev.2012.11.018

    Article  Google Scholar 

  • Balascio NL, Wickler S (2018) Human–environment dynamics during the Iron Age in the Lofoten Islands, Norway. Nor Geogr Tidsskr - Nor J Geogr 72:146–160. https://doi.org/10.1080/00291951.2018.1466831

    Article  Google Scholar 

  • Barlow LK, Sadler JP, Ogilvie AEJ, Buckland PC, Amorosi T, Ingimundarson JH, Skidmore P, Dugmore AJ, McGovern TH (1997) Interdisciplinary investigations of the end of the Norse western settlement in Greenland. Holocene 7:489–499. https://doi.org/10.1177/095968369700700411

    Article  Google Scholar 

  • Bataglion GA, Meurer E, de Albergaria-Barbosa ACR, Bícego MC, Weber RR, Eberlin MN (2015) Determination of geochemically important sterols and triterpenols in sediments using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS). Anal Chem 87:7771–7778. https://doi.org/10.1021/acs.analchem.5b01517

    Article  Google Scholar 

  • Bell M, Blais JM (2019) “-Omics” workflow for paleolimnological and geological archives: a review. Sci Total Environ 672:438–455. https://doi.org/10.1016/j.scitotenv.2019.03.477

    Article  Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K (eds) Tracking environmental change using lake sediments: terrestrial, algal, and siliceous indicators. Springer, Dordrecht, pp 5–32

    Google Scholar 

  • Bhiry N, Marguerie D, Lofthouse S (2016) Paleoenvironmental reconstruction and timeline of a Dorset-Thule Ssettlement at Quaqtaq (Nunavik, Canada). Arct Antarct Alp Res 48:293–313. https://doi.org/10.1657/AAAR0015-045

    Article  Google Scholar 

  • Bindler R (2011) Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden. Environ Geochem Health 33:311–329. https://doi.org/10.1007/s10653-011-9381-7

    Article  Google Scholar 

  • Blais JM, Rosen MR, Smol JP (eds) (2015) Environmental contaminants: using natural archives to track sources and long-term trends of pollution. Springer, Dordrecht

    Google Scholar 

  • Bossard N, Jacob J, Le Milbeau C, Sauze J, Terwilliger V, Poissonnier B, Vergès E (2013) Distribution of miliacin (olean-18-en-3β-ol methyl ether) and reputed sources: implications for the use of sedimentary miliacin as a tracer of millet. Org Geochem 63:48–55. https://doi.org/10.1016/j.orggeochem.2013.07.012

    Article  Google Scholar 

  • Bourgeois JC, Gajewski K, Koerner RM (2001) Spatial patterns of pollen deposition in arctic snow. J Geophys Res Atmospheres 106:5255–5265. https://doi.org/10.1029/2000JD900708

    Article  Google Scholar 

  • Boyle JF (2002) Inorganic geochemical methods in palaeolimnology. In: Blais JM, Rosen MR, Smol JP (eds) Tracking environmental change using lake sediments. Springer, Dordrecht, pp 83–141

    Chapter  Google Scholar 

  • Brenner M, Rosenmeier MF, Hodell DA, Curtis JH (2002) Paleolimnology of the Maya Lowlands: long-term perspectives on interactions among climate, environment, and humans. Anc Mesoam 13:141–157

    Article  Google Scholar 

  • Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36:1299–1310. https://doi.org/10.1016/j.orggeochem.2005.03.011

    Article  Google Scholar 

  • Buckland PC, Edwards KJ, Panagiotakopulu E, Schofield JE (2009) Palaeoecological and historical evidence for manuring and irrigation at Garðar (Igaliku), Norse eastern settlement, Greenland. Holocene 19:105–116. https://doi.org/10.1177/0959683608096602

    Article  Google Scholar 

  • Bull ID, Elhmmali MM, Perret V, Matthews W, Roberts DJ, Evershed RP (2005) Biomarker evidence of faecal deposition in archaeological sediments in Çatalhöyük. Inhabiting Çatalhöyük: reports from the 1995–99 Seasons. McDonald Institute Monographs, Cambridge, pp 415–420

    Google Scholar 

  • Bull ID, Elhmmali MM, Roberts DJ, Evershed RP (2003) The application of steroidal biomarkers to track the abandonment of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry 45:149–161

    Article  Google Scholar 

  • Bull ID, Simpson IA, Dockrill SJ, Evershed RP (1999) Organic geochemical evidence for the origin of ancient anthropogenic soil deposits at Tofts Ness, Sanday, Orkney. Org Geochem 30:535–556

    Article  Google Scholar 

  • Callegaro A, Battistel D, Kehrwald NM, Matsubara Pereira F, Kirchgeorg T, del Villoslada Hidalgo M, C, Bird BW, Barbante C, (2018) Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co. Clim Past 14:1543–1563. https://doi.org/10.5194/cp-14-1543-2018

    Article  Google Scholar 

  • Castilla-Beltrán A, Hooghiemstra H, Hoogland MLP, Pagán-Jiménez J, van Geel B, Field MH, Prins M, Donders T, Herrera Malatesta E, Ulloa Hung J, McMichael CH, Gosling WD, Hofman CL (2018) Columbus’ footprint in Hispaniola: a paleoenvironmental record of indigenous and colonial impacts on the landscape of the central Cibao Valley, northern Dominican Republic. Anthropocene 22:66–80. https://doi.org/10.1016/j.ancene.2018.05.003

    Article  Google Scholar 

  • Chan KH, Lam MHW, Poon K-F, Yeung H-Y, Chiu TKT (1998) Application of sedimentary fecal stanols and sterols in tracing sewage pollution in coastal waters. Water Res 32:225–235. https://doi.org/10.1016/S0043-135497)00175-9

    Article  Google Scholar 

  • Cheng W, Sun L, Kimpe LE, Mallory ML, Smol JP, Gallant LR, Li J, Blais JM (2016) Sterols and stanols preserved in pond sediments track seabird biovectors in a High Arctic environment. Environ Sci Technol 50:9351–9360

    Article  Google Scholar 

  • Chepstow-Lusty A (2011) Agro-pastoralism and social change in the Cuzco heartland of Peru: a brief history using environmental proxies. Antiquity 85:570–582

    Article  Google Scholar 

  • Clark JS, Patterson WA (1997) Background and local charcoal in sediments: scales of fire evidence in the paleorecord. In: Clark JS, Cachier H, Goldammer JG, Stocks BJ (eds) Sediment records of biomass burning and global change. Springer, Berlin, pp 23–48

    Chapter  Google Scholar 

  • Cooke CA, Abbott MB, Wolfe AP (2008) Late-Holocene atmospheric lead deposition in the Peruvian and Bolivian Andes. Holocene 18:353–359. https://doi.org/10.1177/0959683607085134

    Article  Google Scholar 

  • Cooke CA, Abbott MB, Wolfe AP, Kittleson JL (2007) A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes. Environ Sci Technol 41:3469–3474

    Article  Google Scholar 

  • Cooke CA, Bindler R (2015) Lake sediment records of preindustrial metal pollution. In: Blais JM, Rosen MR, Smol JP (eds) Environmental contaminants. Springer, Dordrecht, pp 101–119

    Chapter  Google Scholar 

  • Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139–1139

    Article  Google Scholar 

  • Cordova CE, Kirsten KL, Scott L, Meadows M, Lücke A (2019) Multi-proxy evidence of late-Holocene paleoenvironmental change at Princessvlei, South Africa: the effects of fire, herbivores, and humans. Quat Sci Rev 221:105896. https://doi.org/10.1016/j.quascirev.2019.105896

    Article  Google Scholar 

  • Courel B, Schaeffer P, Adam P, Motsch E, Ebert Q, Moser E, Féliu C, Bernasconi SM, Hajdas I, Ertlen D, Schwartz D (2017) Molecular, isotopic and radiocarbon evidence for broomcorn millet cropping in Northeast France since the Bronze Age. Org Geochem 110:13–24. https://doi.org/10.1016/j.orggeochem.2017.03.002

    Article  Google Scholar 

  • Cranwell PA (1973) Branched-chain and cyclopropanoid acids in a recent sediment. Chem Geol 11:307–313

    Article  Google Scholar 

  • D’Anjou RM, Bradley RS, Balascio NL, Finkelstein DB (2012) Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. Proc Natl Acad Sci USA 109:20332–20337

    Article  Google Scholar 

  • Demske D, Tarasov PE, Leipe C, Kotlia BS, Joshi LM, Long T (2016) Record of vegetation, climate change, human impact and retting of hemp in Garhwal Himalaya (India) during the past 4600 years. Holocene 26:1661–1675. https://doi.org/10.1177/0959683616650267

    Article  Google Scholar 

  • Dendievel A-M, Dietre B, Cubizolle H, Hajdas I, Kofler W, Oberlin C, Haas JN (2019) Holocene paleoecological changes and agro-pastoral impact on the La Narce du Béage mire (Massif Central, France). Holocene 29:992–1010. https://doi.org/10.1177/0959683619831416

    Article  Google Scholar 

  • Devos Y, Nicosia C, Wouters B (2019) Urban geoarchaeology in Belgium: experiences and innovations. Geoarchaeology 2019:1–15. https://doi.org/10.1002/gea.21755

    Article  Google Scholar 

  • Diefendorf AF, Freeman KH, Wing SL (2012) Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance. Geochim Cosmochim Acta 85:342–356. https://doi.org/10.1016/j.gca.2012.02.016

    Article  Google Scholar 

  • Diefendorf AF, Freimuth EJ (2017) Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org Geochem 103:1–21. https://doi.org/10.1016/j.orggeochem.2016.10.016

    Article  Google Scholar 

  • Douglas MSV, Smol JP, Savelle JM, Blais JM (2004) Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proc Natl Acad Sci USA 101:1613–1617. https://doi.org/10.1073/pnas.0307570100

    Article  Google Scholar 

  • Douglas PMJ, Brenner M, Curtis JH (2016) Methods and future directions for paleoclimatology in the Maya Lowlands. Glob Planet Change 138:3–24. https://doi.org/10.1016/j.gloplacha.2015.07.008

    Article  Google Scholar 

  • Douglas PMJ, Pagani M, Eglinton TI, Brenner M, Curtis JH, Breckenridge A, Johnston K (2018) A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nat Geosci 11:645–649. https://doi.org/10.1038/s41561-018-0192-7

    Article  Google Scholar 

  • Doyen É, Vannière B, Berger J-F, Arnaud F, Tachikawa K, Bard E (2013) Land-use changes and environmental dynamics in the upper Rhone valley since Neolithic times inferred from sediments in Lac Moras. Holocene 23:961–973. https://doi.org/10.1177/0959683612475142

    Article  Google Scholar 

  • Dubois N, Jacob J (2016) Molecular biomarkers of anthropic impacts in natural archives: a review. Front Ecol Evol 4:4–16. https://doi.org/10.3389/fevo.2016.00092

    Article  Google Scholar 

  • Dubois N, Saulnier-Talbot É, Mills K, Gell P, Battarbee R, Bennion H, Chawchai S, Dong X, Francus P, Flower R, Gomes DF, Gregory-Eaves I, Humane S, Kattel G, Jenny J, Langdon P, Massaferro J, McGowan S, Mikomägi A, Ngoc NTM, Ratnayake AS, Reid M, Rose N, Saros J, Schillereff D, Tolotti M, Valero-Garcés B (2018) First human impacts and responses of aquatic systems: a review of palaeolimnological records from around the world. Anthr Rev 5:28–68. https://doi.org/10.1177/2053019617740365

    Article  Google Scholar 

  • Dussault F, Bain A, LeMoine G (2014) Early Thule winter houses: an archaeoentomological analysis. Arct Anthropol 51:101–117. https://doi.org/10.3368/aa.51.1.101

    Article  Google Scholar 

  • Dussault F, Bell TJ, Grimes V (2017) Archaeoentomological perspectives on Dorset occupations in Newfoundland: a case study from the site of Phillip’s Garden (EeBi-1). Arctic 69:1. https://doi.org/10.14430/arctic4660

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • Elbaz-Poulichet F, Guédron S, Anne-Lise D, Freydier R, Perrot V, Rossi M, Piot C, Delpoux S, Sabatier P (2020) A 10,000-year record of trace metal and metalloid (Cu, Hg, Sb, Pb) deposition in a western Alpine lake (Lake Robert, France): deciphering local and regional mining contamination. Quat Sci Rev 228:106076. https://doi.org/10.1016/j.quascirev.2019.106076

    Article  Google Scholar 

  • Elhmmali MM, Roberts DJ, Evershed RP (1997) Bile acids as a new class of sewage pollution indicator. Environ Sci Technol 31:3663–3668. https://doi.org/10.1021/es9704040

    Article  Google Scholar 

  • Elias SA (2010) The use of insect fossils in archeology. Dev Quarternary Sci 12:89–121

    Google Scholar 

  • Elias VO, Simoneit BRT, Cordeiro RC, Turcq B (2001) Evaluating levoglucosan as an indicator of biomass burning in Carajas, Amazonia: a comparison to the charcoal record. Geochim Cosmochim Acta 65:267–272. https://doi.org/10.1016/s0016-703700)00522-6

    Article  Google Scholar 

  • Emerson S, Hedges J (2003) Sediment diagenesis and benthic flux. Treatise Geochem 6:625

    Google Scholar 

  • Engling G, Carrico CM, Kreidenweis SM, Collett JL Jr, Day DE, Malm WC, Lincoln E, Min Hao W, Iinuma Y, Herrmann H (2006) Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos Environ 40:299–311. https://doi.org/10.1016/j.atmosenv.2005.12.069

    Article  Google Scholar 

  • Florian C, Miller G, Fogel M, Wolfe A, Vinebrooke R, Geirsdóttir Á (2015) Algal pigments in Arctic lake sediments record biogeochemical changes due to Holocene climate variability and anthropogenic global change. J Paleolimnol 54:53–69. https://doi.org/10.1007/s10933-015-9835-5

    Article  Google Scholar 

  • Fontana L, Sun M, Huang X, Xiang L (2019) The impact of climate change and human activity on the ecological status of Bosten Lake, NW China, revealed by a diatom record for the last 2000 years. Holocene 29:1871–1884. https://doi.org/10.1177/0959683619865586

    Article  Google Scholar 

  • Fredh ED, Lagerås P, Mazier F, Björkman L, Lindbladh M, Broström A (2019) Farm establishment, abandonment and agricultural practices during the last 1,300 years: a case study from southern Sweden based on pollen records and the LOVE model. Veg Hist Archaeobot 28:529–544. https://doi.org/10.1007/s00334-019-00712-x

    Article  Google Scholar 

  • Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182–1190. https://doi.org/10.4319/lo.1988.33.5.1182

    Article  Google Scholar 

  • Gajewski K, Garneau M, Bourgeois JC (1995) Paleoenvironments of the Canadian High Arctic derived from pollen and plant macrofossils: problems and potentials. Quat Sci Rev 14:609–629

    Article  Google Scholar 

  • Garcin Y, Deschamps P, Ménot G, de Saulieu G, Schefuß E, Sebag D, Dupont LM, Oslisly R, Brademann B, Mbusnum KG, Onana J-M, Ako AA, Epp LS, Tjallingii R, Strecker MR, Brauer A, Sachse D (2018) Early anthropogenic impact on western central African rainforests 2,600 y ago. Proc Natl Acad Sci USA 115:3261–3266. https://doi.org/10.1073/pnas.1715336115

    Article  Google Scholar 

  • Gauthier E, Bichet V, Massa C, Petit C, Vannière B, Richard H (2010) Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veg Hist Archaeobot 19:427–438. https://doi.org/10.1007/s00334-010-0251-5

    Article  Google Scholar 

  • Gauthier E, Richard H (2009) Bronze Age at Lake Bourget (NW Alps, France): vegetation, human impact and climatic change. Quat Int 200:111–119. https://doi.org/10.1016/j.quaint.2008.10.004

    Article  Google Scholar 

  • Giguet-Covex C, Pansu J, Arnaud F, Rey PJ, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, Poulenard J, Taberlet P (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun 5:7. https://doi.org/10.1038/ncomms4211

    Article  Google Scholar 

  • Giri SJ, Diefendorf AF, Lowell TV (2015) Origin and sedimentary fate of plant-derived terpenoids in a small river catchment and implications for terpenoids as quantitative paleovegetation proxies. Org Geochem 82:22–32. https://doi.org/10.1016/j.orggeochem.2015.02.002

    Article  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29:811–819

    Article  Google Scholar 

  • Glikson A (2013) Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3:89–92. https://doi.org/10.1016/j.ancene.2014.02.002

    Article  Google Scholar 

  • Goldewijk KK, Beusen A, Doelman J, Stehfest E (2017) Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst Sci Data 9:927–953. https://doi.org/10.5194/essd-9-927-2017

    Article  Google Scholar 

  • Goodfellow RM, Cardoso J, Eglinton G, Dawson JP, Best GA (1977) A faecal sterol survey in the Clyde Estuary. Mar Pollut Bull 8:272–276. https://doi.org/10.1016/0025-326X77)90168-0

    Article  Google Scholar 

  • Greenland National Museum & Archive (2015) Nunniffiit (v1.03). https://nunniffiit.natmus.gl/cbkort. Accessed 30 Oct 2019

  • Grimalt JO, Fernandez P, Bayona JM, Albaiges J (1990) Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ Sci Technol 24:357–363. https://doi.org/10.1021/es00073a011

    Article  Google Scholar 

  • Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol Isot Geosci Sect 59:59–74. https://doi.org/10.1016/0168-962286)90057-6

    Article  Google Scholar 

  • Guillemot T, Bichet V, Gauthier E, Zocatelli R, Massa C, Richard H (2017) Environmental responses of past and recent agropastoral activities on south Greenlandic ecosystems through molecular biomarkers. Holocene 27:783–795. https://doi.org/10.1177/0959683616675811

    Article  Google Scholar 

  • Guillemot T, Zocatelli R, Bichet V, Jacob J, Massa C, Le Milbeau C, Richard H, Gauthier E (2015) Evolution of pastoralism in Southern Greenland during the last two millennia reconstructed from bile acids and coprophilous fungal spores in lacustrine sediments. Org Geochem 81:40–44

    Article  Google Scholar 

  • Haas M, Baumann F, Castella D, Haghipour N, Reusch A, Strasser M, Eglinton TI, Dubois N (2019) Roman-driven cultural eutrophication of Lake Murten, Switzerland. Earth Planet Sci Lett 505:110–117. https://doi.org/10.1016/j.epsl.2018.10.027

    Article  Google Scholar 

  • Haas M, Kaltenrieder P, Ladd SN, Welte C, Strasser M, Eglinton TI, Dubois N (2020) Land-use evolution in the catchment of Lake Murten, Switzerland. Quat Sci Rev 230:106154. https://doi.org/10.1016/j.quascirev.2019.106154

    Article  Google Scholar 

  • Hadley KR, Douglas MS, Blais JM, Smol JP (2010a) Nutrient enrichment in the High Arctic associated with Thule Inuit whalers: a paleolimnological investigation from Ellesmere Island (Nunavut, Canada). Hydrobiologia 649:129–138

    Article  Google Scholar 

  • Hadley KR, Douglas MS, McGhee R, Blais JM, Smol JP (2010b) Ecological influences of Thule Inuit whalers on high Arctic pond ecosystems: a comparative paleolimnological study from Bathurst Island (Nunavut, Canada). J Paleolimnol 44:85–93

    Article  Google Scholar 

  • Haile J, Froese DG, MacPhee RDE, Roberts RG, Arnold LJ, Reyes AV, Rasmussen M, Nielsen R, Brook BW, Robinson S, Demuro M, Gilbert MTP, Munch K, Austin JJ, Cooper A, Barnes I, Möller P, Willerslev E (2009) Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc Natl Acad Sci USA 106:22352–22357. https://doi.org/10.1073/pnas.0912510106

    Article  Google Scholar 

  • Hald MM, Mosekilde J, Magnussen B, Søe MJ, Hansen CH, Mortensen MF (2018) Tales from the barrels: results from a multi-proxy analysis of a latrine from Renaissance Copenhagen, Denmark. J Archaeol Sci Rep 20:602–610. https://doi.org/10.1016/j.jasrep.2018.06.006

    Article  Google Scholar 

  • Hargan KE, Stewart EM, Michelutti N, Grooms C, Kimpe LE, Mallory ML, Smol JP, Blais JM (2018) Sterols and stanols as novel tracers of waterbird population dynamics in freshwater ponds. Proc R Soc B 285:20180631. https://doi.org/10.1098/rspb.2018.0631

    Article  Google Scholar 

  • Hirons AC, Schell DM, Finney BP (2001) Temporal records of δ13C and δ15N in North Pacific pinnipeds: inferences regarding environmental change and diet. Oecologia 129:591–601. https://doi.org/10.1007/s004420100756

    Article  Google Scholar 

  • Hobson KA, Schell DM (1998) Stable carbon and nitrogen isotope patterns in baleen from eastern Arctic bowhead whales. Can J Fish Aquat Sci 55:2601–2607

    Article  Google Scholar 

  • Howard S, McInerney FA, Caddy-Retalic S, Hall PA, Andrae JW (2018) Modelling leaf wax n-alkane inputs to soils along a latitudinal transect across Australia. Org Geochem 121:126–137. https://doi.org/10.1016/j.orggeochem.2018.03.013

    Article  Google Scholar 

  • Huang X, Zhang J, Storozum M, Liu S, Gill JL, Xiang L, Ren X, Wang J, Qiang M, Chen F, Grimm EC (2020) Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts. Rev Palaeobot Palynol 275:104171. https://doi.org/10.1016/j.revpalbo.2020.104171

    Article  Google Scholar 

  • Jacob J, Disnar J-R, Arnaud F, Chapron E, Debret M, Lallier-Vergès E, Desmet M, Revel-Rolland M (2008a) Millet cultivation history in the French Alps as evidenced by a sedimentary molecule. J Archaeol Sci 35:814–820. https://doi.org/10.1016/j.jas.2007.06.006

    Article  Google Scholar 

  • Jacob J, Disnar J-R, Arnaud F, Gauthier E, Billaud Y, Chapron E, Bardoux G (2009) Impacts of new agricultural practices on soil erosion during the Bronze Age in the French Prealps. Holocene 19:241–249. https://doi.org/10.1177/0959683608100568

    Article  Google Scholar 

  • Jacob J, Disnar J-R, Bardoux G (2008b) Carbon isotope evidence for sedimentary miliacin as a tracer of Panicum miliaceum (broomcorn millet) in the sediments of Lake le Bourget (French Alps). Org Geochem 39:1077–1080. https://doi.org/10.1016/j.orggeochem.2008.04.003

    Article  Google Scholar 

  • Jacob J, Disnar J-R, Boussafir M, Spadano Albuquerque AL, Sifeddine A, Turcq B (2005) Pentacyclic triterpene methyl ethers in recent lacustrine sediments (Lagoa do Caçó, Brazil). Org Geochem 36:449–461. https://doi.org/10.1016/j.orggeochem.2004.09.005

    Article  Google Scholar 

  • Jaffe R, Ding Y, Niggemann J, Vahatalo AV, Stubbins A, Spencer RGM, Campbell J, Dittmar T (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347. https://doi.org/10.1126/science.1231476

    Article  Google Scholar 

  • Jouffroy-Bapicot I, Vannière B, Gauthier É, Richard H, Monna F, Petit C (2013) 7000 years of vegetation history and land-use changes in the Morvan Mountains (France): a regional synthesis. Holocene 23:1888–1902. https://doi.org/10.1177/0959683613508161

    Article  Google Scholar 

  • Juggins S (2013) Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat Sci Rev 64:20–32. https://doi.org/10.1016/j.quascirev.2012.12.014

    Article  Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner MR, Gajewski K, Geirsdóttiro O, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin LV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180 W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Keely BJ (2006) Geochemistry of chlorophylls. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 535–561

    Chapter  Google Scholar 

  • Kenward HK (1976) Reconstructing ancient ecological conditions from insect remains; some problems and an experimental approach. Ecol Entomol 1:7–17. https://doi.org/10.1111/j.1365-2311.1976.tb01200.x

    Article  Google Scholar 

  • Key FM, Posth C, Krause J, Herbig A, Bos KI (2017) Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet 33:508–520. https://doi.org/10.1016/j.tig.2017.05.005

    Article  Google Scholar 

  • Kinder M, Tylmann W, Bubak I, Fiłoc M, Gąsiorowski M, Kupryjanowicz M, Mayr C, Sauer L, Voellering U, Zolitschka B (2019) Holocene history of human impacts inferred from annually laminated sediments in Lake Szurpiły, northeast Poland. J Paleolimnol 61:419–435. https://doi.org/10.1007/s10933-019-00068-2

    Article  Google Scholar 

  • Knights BA, Dickson CA, Dickson JH, Breeze DJ (1983) Evidence concerning the Roman military diet at Bearsden, Scotland, in the 2nd century AD. J Archaeol Sci 10:139–152

    Article  Google Scholar 

  • Korosi JB, Cheng W, Blais JM (2015) Organic pollutants in sediment core archives. In: Blais JM, Rosen MR, Smol JP (eds) Environmental contaminants. Springer, Dordrecht, pp 161–185

    Chapter  Google Scholar 

  • Korosi JB, Thienpont JR, Pisaric MF (2017a) Broad-scale lake expansion and flooding inundates essential wood bison habitat. Nat Commun 8:1–8

    Article  Google Scholar 

  • Korosi JB, Thienpont JR, Smol JP, Blais JM (2017b) Paleo-ecotoxicology: what can lake sediments tell us about ecosystem responses to environmental pollutants? Environ Sci Technol 51:9446–9457

    Article  Google Scholar 

  • Krause S, Beach T, Luzzadder-Beach S, Guderjan TH, Valdez F, Eshleman S, Doyle C, Bozarth SR (2019) Ancient Maya wetland management in two watersheds in Belize: soils, water, and paleoenvironmental change. Quat Int 502:280–295. https://doi.org/10.1016/j.quaint.2018.10.029

    Article  Google Scholar 

  • Kuhajda K, Kandrac J, Kevresan S, Mikov M, Fawcett JP (2006) Structure and origin of bile acids: an overview. Eur J Drug Metab Pharmacokinet 31:135–143

    Article  Google Scholar 

  • Kuo LJ, Louchouarn P, Herbert BE (2011) Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues. Chemosphere 85:797–805. https://doi.org/10.1016/j.chemosphere.2011.06.074

    Article  Google Scholar 

  • Kuzyk ZZA, Macdonald RW, Johannessen SC (2015) Calculating rates and dates and interpreting contaminant profiles in biomixed sediments. In: Blais JM, Rosen MR, Smol JP (eds) Environmental contaminants. Springer, Dordrecht, pp 61–87

    Chapter  Google Scholar 

  • Lamb HF (1985) Palynological evidence for postglacial change in the position of tree limit in Labrador. Ecol Monogr 55:241–258. https://doi.org/10.2307/1942559

    Article  Google Scholar 

  • Lan T, Lindqvist C (2019) Technical advances and challenges in genome-scale analysis of ancient DNA. In: Lindqvist C, Rajora OP (eds) Paleogenomics: genome-scale analysis of ancient DNA. Springer, Cham, pp 3–29

    Google Scholar 

  • Last WM, Smol JP (2001a) Tracking environmental change using lake sediments: volume 1: basin analysis, coring, and chronological techniques. Springer, Dordrecht

    Book  Google Scholar 

  • Last WM, Smol JP (2001b) Tracking environmental change using lake sediments: volume 2: physical and geochemical methods. Springer, Dordrecht

    Book  Google Scholar 

  • Lavrieux M, Jacob J, Disnar JR, Bréheret JG, Le Milbeau C, Miras Y, Andrieu-Ponel V (2013) Sedimentary cannabinol tracks the history of hemp retting. Geology 41:751–754. https://doi.org/10.1130/G34073.1

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal, and siliceous. Kluwer Academic Publishers, Dordrect, pp 295–326

    Google Scholar 

  • Ledger PM (2018) Are circumpolar hunter-gatherers visible in the palaeoenvironmental record? Pollen-analytical evidence from Nunalleq, southwestern Alaska. Holocene 28:415–426. https://doi.org/10.1177/0959683617729447

    Article  Google Scholar 

  • Ledger PM, Girdland-Flink L, Forbes V (2019) New horizons at L’Anse aux Meadows. Proc Natl Acad Sci USA 116:15341–15343. https://doi.org/10.1073/pnas.1907986116

    Article  Google Scholar 

  • Lee CSL, Qi S, Zhang G, Luo C, Zhao LYL, Li X (2008) Seven thousand years of records on the mining and utilization of metals from lake sediments in central China. Environ Sci Technol 42:4732–4738. https://doi.org/10.1021/es702990n

    Article  Google Scholar 

  • Lehndorff E, Linstädter J, Kehl M, Weniger GC (2015) Fire history reconstruction from black carbon analysis in Holocene cave sediments at Ifri Oudadane, northeastern Morocco. Holocene 25:398–402. https://doi.org/10.1177/0959683614558651

    Article  Google Scholar 

  • Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensics 6:109–131. https://doi.org/10.1080/15275920590952739

    Article  Google Scholar 

  • Llamas B, Valverde G, Fehren-Schmitz L, Weyrich LS, Cooper A, Haak W (2017) From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci Technol Archaeol Res 3:1–14. https://doi.org/10.1080/20548923.2016.1258824

    Article  Google Scholar 

  • Luo L, Wang X, Guo H, Lasaponara R, Zong X, Masini N, Wang G, Shi P, Khatteli H, Chen F, Tariq S, Shao J, Bachagha N, Yang R, Yao Y (2019) Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907–2017). Remote Sens Environ 232:111280. https://doi.org/10.1016/j.rse.2019.111280

    Article  Google Scholar 

  • Machado KS, Froehner S, Rizzi J, Torres M (2018) Tracking capybara (Hydrochoerus hydrochaeris) feces contribution method in aquatic environments using sterols: capybara feces tracking in the aquatic environment. Environ Toxicol Chem 37:353–361. https://doi.org/10.1002/etc.4004

    Article  Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of steroids. Science 217:491–504

    Article  Google Scholar 

  • Martindale A, Morlan R, Betts M, Blake M, Gajewski K, Chaput MA, Mason A, Vermeersch P (2016) Canadian Archaeological Radiocarbon Database (CARD 2.1). https://www.canadianarchaeology.ca. Accessed 30 Oct 2019

  • Masi A, Francke A, Pepe C, Thienemann M, Wagner B, Sadori L (2018) Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece) during the Late Glacial and Holocene. Clim Past 14:351–367. https://doi.org/10.5194/cp-14-351-2018

    Article  Google Scholar 

  • Masiello CA, Louchouarn P (2013) Fire in the ocean. Science 340:287–288. https://doi.org/10.1126/science.1237688

    Article  Google Scholar 

  • Massa C, Bichet V, Gauthier É, Perren BB, Mathieu O, Petit C, Monna F, Giraudeau J, Losno R, Richard H (2012) A 2500 year record of natural and anthropogenic soil erosion in South Greenland. Quat Sci Rev 32:119–130. https://doi.org/10.1016/j.quascirev.2011.11.014

    Article  Google Scholar 

  • Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7:1–11. https://doi.org/10.1038/ncomms13603

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900. https://doi.org/10.1016/0146-638093)90100-p

    Article  Google Scholar 

  • Meyers PA, Leenheer MJ, Eadie BJ, Maule SJ (1984) Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochim Cosmochim Acta 48:443–452. https://doi.org/10.1016/0016-703784)90273-4

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and geochemical methods. Springer, Dordrecht, pp 239–269

    Google Scholar 

  • Michelutti N, McCleary KM, Antoniades D, Sutherland P, Blais JM, Douglas MS, Smol JP (2013) Using paleolimnology to track the impacts of early Arctic peoples on freshwater ecosystems from southern Baffin Island, Nunavut. Quat Sci Rev 76:82–95

    Article  Google Scholar 

  • Michelutti N, Smol J (2016) Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–265. https://doi.org/10.1007/s10933-016-9921-3

    Article  Google Scholar 

  • Michelutti N, Wolfe AP, Briner JP, Miller GH (2007) Climatically controlled chemical and biological development in Arctic lakes. J Geophys Res Biogeosci 112:1–10. https://doi.org/10.1029/2006JG000396

    Article  Google Scholar 

  • Mills K, Schillereff D, Saulnier-Talbot É, Gell P, Anderson NJ, Arnaud F, Dong X, Jones M, McGowan S, Massaferro J (2017) Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle. Wiley Interdiscip Rev Water 4:1–29

    Article  Google Scholar 

  • Morin-Rivat J, Biwolé A, Gorel AP, Vleminckx J, Gillet JF, Bourland N, Hardy OJ, Smith AL, Daïnou K, Dedry L, Beeckman H, Doucet JL (2016) High spatial resolution of late-Holocene human activities in the moist forests of central Africa using soil charcoal and charred botanical remains. Holocene 26:1954–1967. https://doi.org/10.1177/0959683616646184

    Article  Google Scholar 

  • Motuzaite-Matuzeviciute G, Jacob J, Telizhenko S, Jones MK (2016) Miliacin in palaeosols from an Early Iron Age in Ukraine reveal in situ cultivation of broomcorn millet. Archaeol Anthropol Sci 8:43–50. https://doi.org/10.1007/s12520-013-0142-7

    Article  Google Scholar 

  • Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113. https://doi.org/10.1007/s11745-004-1336-x

    Article  Google Scholar 

  • Naito S, Katsuta N, Kawakami S, Koido Y, Shimono H (2019) Late Holocene climatic impact on vegetation and human activity in central Japan, recorded in sediment at Arao-Minami archaeological site, northwestern Nobi Plain. Quat Int 519:144–155. https://doi.org/10.1016/j.quaint.2019.04.019

    Article  Google Scholar 

  • Nicosia C, Ertani A, Vianello A, Nardi S, Brogiolo GP, Arnau AC, Becherini F (2018) Heart of darkness: an interdisciplinary investigation of the urban anthropic deposits of the Baptistery of Padua (Italy). Archaeol Anthropol Sci 11:1977–1993. https://doi.org/10.1007/s12520-018-0646-2

    Article  Google Scholar 

  • Niemeyer B, Epp LS, Stoof-Leichsenring KR, Pestryakova LA, Herzschuh U (2017) A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol Ecol Resour 17:e46–e62. https://doi.org/10.1111/1755-0998.12689

    Article  Google Scholar 

  • Novenko EY, Zyuganova IS, Volkova EM, Dyuzhova KV (2019) A 7000-year pollen and plant macrofossil record from the Mid-Russian Upland, European Russia: vegetation history and human impact. Quat Int 504:70–79. https://doi.org/10.1016/j.quaint.2017.11.025

    Article  Google Scholar 

  • Oros DR, Simoneit BRT (2001a) Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees. Appl Geochem 16:1545–1565

    Article  Google Scholar 

  • Oros DR, Simoneit BRT (2001b) Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Appl Geochem 16:1513–1544

    Article  Google Scholar 

  • Panagiotakopulu E, Buchan AL (2015) Present and Norse Greenlandic hayfields—insect assemblages and human impact in southern Greenland. Holocene 25:921–931. https://doi.org/10.1177/0959683615574585

    Article  Google Scholar 

  • Panagiotakopulu E, Schofield JE, Vickers K, Edwards KJ, Buckland PC (2018) Thule Inuit environmental impacts on Kangeq, southwest Greenland. Quat Int 549:176–190. https://doi.org/10.1016/j.quaint.2018.09.011

    Article  Google Scholar 

  • Panagiotakopulu E, Skidmore P, Buckland P (2007) Fossil insect evidence for the end of the Western Settlement in Norse Greenland. Naturwissenschaften 94:300–306. https://doi.org/10.1007/s00114-006-0199-6

    Article  Google Scholar 

  • Penny D, Hall T, Evans D, Polkinghorne M (2019) Geoarchaeological evidence from Angkor, Cambodia, reveals a gradual decline rather than a catastrophic 15th-century collapse. Proc Natl Acad Sci USA 116:4871–4876. https://doi.org/10.1073/pnas.1821460116

    Article  Google Scholar 

  • Pienitz R, Smol JP, Last WM, Leavitt PR, Cumming BF (2000) Multi-proxy Holocene palaeoclimatic record from a saline lake in the Canadian Subarctic. Holocene 10:673–686

    Article  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235. https://doi.org/10.1007/s00374-008-0345-8

    Article  Google Scholar 

  • Pini R, Ravazzi C, Raiteri L, Guerreschi A, Castellano L, Comolli R (2017) From pristine forests to high-altitude pastures: an ecological approach to prehistoric human impact on vegetation and landscapes in the western Italian Alps. J Ecol 105:1580–1597. https://doi.org/10.1111/1365-2745.12767

    Article  Google Scholar 

  • Pompeani DP, Abbott MB, Steinman BA, Bain DJ (2013) Lake sediments record prehistoric lead pollution related to early copper production in North America. Environ Sci Technol 47:5545–5552. https://doi.org/10.1021/es304499c

    Article  Google Scholar 

  • Prost K, Birk JJ, Lehndorff E, Gerlach R, Amelung W (2017) Steroid biomarkers revisited—improved source identification of faecal remains in archaeological soil material. PLoS ONE 12:e0164882

    Article  Google Scholar 

  • Razjigaeva NG, Ganzey LA, Lyaschevskaya MS, Makarova TR, Kudryavtseva EP, Grebennikova TA, Panichev AM, Arslanov KhA, Maksimov FE, Petrov AY, Malkov SS (2019) Climatic and human impacts on landscape development of the Murav’ev Amursky Peninsula (Russian South Far East) in the middle/late Holocene and historical time. Quat Int 516:127–140. https://doi.org/10.1016/j.quaint.2017.12.007

    Article  Google Scholar 

  • Rees-Owen RL, Gill FL, Newton RJ, Ivanovic RF, Francis JE, Riding JB, Vane CH, Lopes dos Santos RA (2018) The last forests on Antarctica: reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains. Org Geochem 118:4–14

    Article  Google Scholar 

  • Ritchie J (1987) Postglacial vegetation of Canada. Cambridge University Press, New York

    Google Scholar 

  • Ritchie JC (1995) Tansley Review 83. Current trends in studies of long-term plant community dynamics. New Phytol 130:469–494. https://doi.org/10.1111/j.1469-8137.1995.tb04325.x

    Article  Google Scholar 

  • Romero-Sarmiento MF, Riboulleau A, Vecoli M, Laggoun-Défarge F, Versteegh GJM (2011) Aliphatic and aromatic biomarkers from Carboniferous coal deposits at Dunbar (East Lothian, Scotland): palaeobotanical and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 309:309–326. https://doi.org/10.1016/j.palaeo.2011.06.015

    Article  Google Scholar 

  • Roy N, Woollett J, Bhiry N (2015) Paleoecological perspectives on landscape history and anthropogenic impacts at Uivak Point, Labrador, since AD 1400. Holocene 25:1742–1755. https://doi.org/10.1177/0959683615591350

    Article  Google Scholar 

  • Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887. https://doi.org/10.1098/rspb.2013.1887

    Article  Google Scholar 

  • Russo EB (2007) History of Cannabis and its preparations in saga, science, and sobriquet. Chem Biodivers 4:1614–1648. https://doi.org/10.1002/cbdv.200790144

    Article  Google Scholar 

  • Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, Freeman KH, Magill CR, McInerney FA, van der Meer MTJ, Polissar P, Robins RJ, Sachs JP, Schmidt H-L, Sessions AL, White JWC, West JB, Kahmen A (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci 40:221–249. https://doi.org/10.1146/annurev-earth-042711-105535

    Article  Google Scholar 

  • Sadori L, Giardini M (2007) Charcoal analysis, a method to study vegetation and climate of the Holocene: the case of Lago di Pergusa (Sicily, Italy). Geobios 40:173–180. https://doi.org/10.1016/j.geobios.2006.04.002

    Article  Google Scholar 

  • Schneider T, Rimer D, Butz C, Grosjean M (2018) A high-resolution pigment and productivity record from the varved Ponte Tresa basin (Lake Lugano, Switzerland) since 1919: insight from an approach that combines hyperspectral imaging and high-performance liquid chromatography. J Paleolimnol 60:381–398. https://doi.org/10.1007/s10933-018-0028-x

    Article  Google Scholar 

  • Schroeter N, Lauterbach S, Stebich M, Kalanke J, Mingram J, Yildiz C, Schouten S, Gleixner G (2020) Biomolecular evidence of early human occupation of a high-altitude site in Western Central Asia during the Holocene. Front Earth Sci 8:1–13. https://doi.org/10.3389/feart.2020.00020

    Article  Google Scholar 

  • Schüpbach S, Kirchgeorg T, Colombaroli D, Beffa G, Radaelli M, Kehrwald NM, Barbante C (2015) Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala. Quat Sci Rev 115:123–131. https://doi.org/10.1016/j.quascirev.2015.03.004

    Article  Google Scholar 

  • Schwarzbauer J, Stock F, Brückner H, Dsikowitzky L, Krichel M (2017) Molecular organic indicators for human activities in the Roman harbor of Ephesus, Turkey. Geoarchaeology 33:498–509. https://doi.org/10.1002/gea.21669

    Article  Google Scholar 

  • Seersholm FV, Pedersen MW, Soe MJ, Shokry H, Mak SST, Ruter A, Raghavan M, Fitzhugh W, Kjaer KH, Willerslev E, Meldgaard M, Kapel CMO, Hansen AJ (2016) DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago. Nat Commun 7:9. https://doi.org/10.1038/ncomms13389

    Article  Google Scholar 

  • Selig U, Leipe T, Dorfler W (2007) Paleolimnological records of nutrient and metal profiles in prehistoric, historic and modern sediments of three lakes in north-eastern Germany. Water Air Soil Pollut 184:183–194. https://doi.org/10.1007/s11270-007-9407-z

    Article  Google Scholar 

  • Shah VG, Hugh Dunstan R, Geary PM, Coombes P, Roberts TK, Von Nagy-Felsobuki E (2007) Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples. Water Res 41:3691–3700. https://doi.org/10.1016/j.watres.2007.04.006

    Article  Google Scholar 

  • Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, Knaap WOVD (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281:1635–1640. https://doi.org/10.1126/science.281.5383.1635

    Article  Google Scholar 

  • Shumilovskikh LS, Hopper K, Djamali M, Ponel P, Demory F, Rostek F, Tachikawa K, Bittmann F, Golyeva A, Guibal F, Talon B, Wang LC, Nezamabadi M, Bard E, Lahijani H, Nokandeh J, Omrani Rekavandi H, de Beaulieu JL, Sauer E, Andrieu-Ponel V (2016) Landscape evolution and agro-sylvo-pastoral activities on the Gorgan Plain (NE Iran) in the last 6000 years. Holocene 26:1676–1691. https://doi.org/10.1177/0959683616646841

    Article  Google Scholar 

  • Siart C, Forbriger M, Bubenzer O (2018) Digital Geoarchaeology: Bridging the gap between archaeology, geosciences and computer sciences. In: Siart C, Forbriger M, Bubenzer O (eds) Digital geoarchaeology: new techniques for interdisciplinary human-environmental research. Springer, Cham, pp 1–7

    Chapter  Google Scholar 

  • Simonneau A, Doyen E, Chapron E, Millet L, Vannière B, Di Giovanni C, Bossard N, Tachikawa K, Bard E, Albéric P, Desmet M, Roux G, Lajeunesse P, Berger JF, Arnaud F (2013) Holocene land-use evolution and associated soil erosion in the French Prealps inferred from Lake Paladru sediments and archaeological evidences. J Archaeol Sci 40:1636–1645. https://doi.org/10.1016/j.jas.2012.12.002

    Article  Google Scholar 

  • Simpson IA, van Bergen PF, Perret V, Elhmmali MM, Roberts DJ, Evershed RP (1999) Lipid biomarkers of manuring practice in relict anthropogenic soils. Holocene 9:223–229

    Article  Google Scholar 

  • Smol JP, Birks HJ, Last WM (2006) Tracking environmental change using lake sediments: volume 3: terrestrial, algal, and siliceous indicators. Springer, Dordrecht

    Google Scholar 

  • Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011

    Article  Google Scholar 

  • Søe MJ, Nejsum P, Fredensborg BL, Kapel CMO (2015) DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J Parasitol 101:57. https://doi.org/10.1645/14-650.1

    Article  Google Scholar 

  • Søe MJ, Nejsum P, Seersholm FV, Fredensborg BL, Habraken R, Haase K, Hald MM, Simonsen R, Højlund F, Blanke L, Merkyte I, Willerslev E, Kapel CMO (2018) Ancient DNA from latrines in northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE 13:e0195481. https://doi.org/10.1371/journal.pone.0195481

    Article  Google Scholar 

  • Sonnenburg EP, Boyce JI, Reinhardt EG (2013) Multi-proxy lake sediment record of prehistoric (Paleoindian-Archaic) archaeological paleoenvironments at Rice Lake, Ontario, Canada. Quat Sci Rev 73:77–92. https://doi.org/10.1016/j.quascirev.2013.05.012

    Article  Google Scholar 

  • Spear RW (1993) The palynological record of the Late-Quarternary Arctic tree-line in northwest Canada. Rev Palaeobot Palynol 79:99–111. https://doi.org/10.1016/0034-666793)90040-2

    Article  Google Scholar 

  • Stanley J-D, Bernhardt CE (2010) Alexandria’s eastern harbor, Egypt: pollen, microscopic charcoal, and the transition from natural to human-modified basin. J Coast Res 261:67–79. https://doi.org/10.2112/JCOASTRES-D-09-00089.1

    Article  Google Scholar 

  • Stanley J-D, Carlson RW, Van Beek G, Jorstad TF, Landau EA (2007) Alexandria, Egypt, before Alexander the Great: a multidisciplinary approach yields rich discoveries. GSA Today 17:4. https://doi.org/10.1130/GSAT01708A.1

    Article  Google Scholar 

  • Steinman BA, Abbott MB (2013) Isotopic and hydrologic responses of small, closed lakes to climate variability: hydroclimate reconstructions from lake sediment oxygen isotope records and mass balance models. Geochim Cosmochim Acta 105:342–359. https://doi.org/10.1016/j.gca.2012.11.027

    Article  Google Scholar 

  • Tan Z, Mao L, Han Y, Mo D, Gu H, Liu Z, Long Y, An Z (2018) Black carbon and charcoal records of fire and human land use over the past 1300 years at the Tongguan Kiln archaeological site, China. Palaeogeogr Palaeoclimatol Palaeoecol 504:162–169. https://doi.org/10.1016/j.palaeo.2018.05.022

    Article  Google Scholar 

  • Thienemann, M (2017). Reconstructing Holocene climatic and environmental change using molecular and isotopic proxies from lake sedimentary records. PhD thesis, Universität zu Köln https://kups.ub.uni-koeln.de/7836/

  • Tian Y, Li YL, Zhao FC (2017) Secondary metabolites from polar organisms. Mar Drugs 15:28. https://doi.org/10.3390/md15030028

    Article  Google Scholar 

  • Tinner W, Lotter AF, Ammann B, Conedera M, Hubschmid P, van Leeuwen JFN, Wehrli M (2003) Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quat Sci Rev 22:1447–1460. https://doi.org/10.1016/S0277-379103)00083-0

    Article  Google Scholar 

  • Trendel JM, Schaeffer P, Adam P, Ertlen D, Schwartz D (2010) Molecular characterisation of soil surface horizons with different vegetation in the Vosges (Massif France). Org Geochem 41:1036–1039. https://doi.org/10.1016/j.orggeochem.2010.04.014

    Article  Google Scholar 

  • Tyagi P, Edwards DR, Coyne MS (2008) Use of sterol and bile acid biomarkers to identify domesticated animal sources of fecal pollution. Water Air Soil Pollut 187:263–274

    Article  Google Scholar 

  • USGS (2016) Proxies. In: Proxies. https://www2.usgs.gov/landresources/lcs/paleoclimate/proxies.asp. Accessed 24 Oct 2019

  • van den Bos V, Newnham R, Rees A, Woods L (2020) Density separation in pollen preparation: how low can you go? J Paleolimnol 63:225–234. https://doi.org/10.1007/s10933-020-00112-6

    Article  Google Scholar 

  • van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883. https://doi.org/10.1016/S0305-440302)00265-0

    Article  Google Scholar 

  • Veron AJ, Flaux C, Marriner N, Poirier A, Rigaud S, Morhange C, Empereur JY (2013) A 6000-year geochemical record of human activities from Alexandria (Egypt). Quat Sci Rev 81:138–147. https://doi.org/10.1016/j.quascirev.2013.09.029

    Article  Google Scholar 

  • Vignola C, Masi A, Balossi Restelli F, Frangipane M, Marzaioli F, Passariello I, Stellato L, Terrasi F, Sadori L (2017) δ13C and δ15N from 14C-AMS dated cereal grains reveal agricultural practices during 4300–2000 BC at Arslantepe (Turkey). Rev Palaeobot Palynol 247:164–174. https://doi.org/10.1016/j.revpalbo.2017.09.001

    Article  Google Scholar 

  • White AJ, Stevens LR, Lorenzi V, Munoz SE, Schroeder S, Cao A, Bogdanovich T (2019) Fecal stanols show simultaneous flooding and seasonal precipitation change correlate with Cahokia’s population decline. Proc Natl Acad Sci USA 116:5461–5466. https://doi.org/10.1073/pnas.1809400116

    Article  Google Scholar 

  • Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K (eds) Tracking environmental change using lake sediments: terrestrial, algal, and siliceous indicators. Springer, Dordrecht, pp 75–97

    Google Scholar 

  • Whitlock C, Millspaugh SH (1996) Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. Holocene 6:7–15

    Article  Google Scholar 

  • WHO (1993) Biomarkers and risk assessment: concepts and principles. World Health Organization

  • Zennaro P, Kehrwald N, McConnell JR, Schüpbach S, Maselli OJ, Marlon J, Vallelonga P, Leuenberger D, Zangrando R, Spolaor A, Borrotti M, Barbaro E, Gambaro A, Barbante C (2014) Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Clim Past 10:1905–1924. https://doi.org/10.5194/cp-10-1905-2014

    Article  Google Scholar 

  • Zocatelli R, Lavrieux M, Guillemot T, Chassiot L, Le Milbeau C, Jacob J (2017) Fecal biomarker imprints as indicators of past human land uses: Source distinction and preservation potential in archaeological and natural archives. J Archaeol Sci 81:79–89

    Article  Google Scholar 

  • Zou S, Li R, Xie S, Zhu J, Wang X, Huang J (2010) Paleofire indicated by polycyclic aromatic hydrocarbons in soil of Jinluojia archaeological site, Hubei, China. J Earth Sci 21:247–256. https://doi.org/10.1007/s12583-010-0089-x

    Article  Google Scholar 

  • Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266:195–202. https://doi.org/10.1016/S0048-969700)00740-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Natural Sciences and Engineering Research Council (Canada) Discovery Grant (RGPIN-2018-04248) to JMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madison A. Bell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, M.A., Blais, J.M. Paleolimnology in support of archeology: a review of past investigations and a proposed framework for future study design. J Paleolimnol 65, 1–32 (2021). https://doi.org/10.1007/s10933-020-00156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00156-8

Keywords

Navigation