Skip to main content

Advertisement

Log in

Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ~29 cal ka

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We present results of analyses on a sediment core from Lake Karakul, located in the eastern Pamir Mountains, Tajikistan. The core spans the last ~29 cal ka. We investigated and assessed processes internal and external to the lake to infer changes in past moisture availability. Among the variables used to infer lake-external processes, high values of grain-size end-member (EM) 3 (wide grain-size distribution that reflects fluvial input) and high Sr/Rb and Zr/Rb ratios (coinciding with coarse grain sizes), are indicative of moister conditions. High values in EM1, EM2 (peaks of small grain sizes that reflect long-distance dust transport or fine, glacially derived clastic input) and TiO2 (terrigenous input) are thought to reflect greater influence of dry air masses, most likely of Westerly origin. High input of dust from distant sources, beginning before the Last Glacial Maximum (LGM) and continuing to the late glacial, reflects the influence of dry Westerlies, whereas peaks in fluvial input suggest increased moisture availability. The early to early-middle Holocene is characterised by coarse mean grain sizes, indicating constant, high fluvial input and moister conditions in the region. A steady increase in terrigenous dust and a decrease in fluvial input from 6.6 cal ka BP onwards points to the Westerlies as the predominant atmospheric circulation through to present, and marks a return to drier and even arid conditions in the area. Proxies for productivity (TOC, TOC/TN, TOC Br ), redox potential (Fe/Mn) and changes in the endogenic carbonate precipitation (TIC, δ18O Carb ) indicate changes within the lake. Low productivity characterised the lake from the late Pleistocene until 6.6 cal ka BP, and increased rapidly afterwards. Lake level remained low until the LGM, but water depth increased to a maximum during the late glacial and remained high into the early Holocene. Subsequently, the water level decreased to its present stage. Today the lake system is mainly climatically controlled, but the depositional regime is also driven by internal limnogeological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowski U, Bergau A, Seebach D, Zech R, Glaser B, Sosin P, Kubik PW, Zech W (2006) Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat Sci Rev 25:1080–1096. doi:10.1016/j.quascirev.2005.10.003

    Article  Google Scholar 

  • Aichner B, Feakins SJ, Lee JE, Herzschuh U, Liu X (2015) High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past 11:619–633

    Article  Google Scholar 

  • Aizen EM, Aizen VB, Melack JM, Nakamura T, Ohta T (2001) Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol 21:535–556. doi:10.1002/joc.626

    Article  Google Scholar 

  • An Z, Colman SM, Zhou W, Li X, Brown ET, Jull AJT, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep. doi:10.1038/srep00619

    Google Scholar 

  • Biskaborn BK, Herzschuh U, Bolshiyanov DY, Schwamborn G, Diekmann B (2013) Thermokarst processes and depositional events in a tundra lake, Northeastern Siberia. Permafr Periglac Process 24:160–174. doi:10.1002/ppp.1769

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474. doi:10.1214/ba/1339616472

    Google Scholar 

  • Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295. doi:10.1111/j.1502-3885.2006.tb01158.x

    Article  Google Scholar 

  • Boulton GS (1978) Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology 25:773–799. doi:10.1111/j.1365-3091.1978.tb00329.x

    Article  Google Scholar 

  • Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht, pp 83–141

    Google Scholar 

  • Çağatay MN, Öğretmen N, Damcı E, Stockhecke M, Sancar Ü, Eriş KK, Özeren S (2014) Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quat Sci Rev 104:97–116. doi:10.1016/j.quascirev.2014.09.027

    Article  Google Scholar 

  • Chen F-H, Chen J-H, Holmes J, Boomer I, Austin P, Gates JB, Wang N-L, Brooks SJ, Zhang J-W (2010) Moisture changes over the last millennium in arid Central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev 29:1055–1068. doi:10.1016/j.quascirev.2010.01.005

    Article  Google Scholar 

  • Cheng H, Zhang PZ, Spötl C, Edwards RL, Cai YJ, Zhang DZ, Sang WC, Tan M, An ZS (2012) The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett 39:L01705. doi:10.1029/2011GL050202

    Article  Google Scholar 

  • Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, USA

    Google Scholar 

  • Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dietze M, Dietze E (2013) EMMAgeo: end-member modelling algorithm and supporting functions for grain-size analysis, R package version 0.9.0

  • Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A (2012) An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau China. Sediment Geol. doi:10.1016/j.sedgeo.2011.09.014

    Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2013) Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen. Quat Sci Rev 78:188–208. doi:10.1016/j.quascirev.2013.07.025

    Article  Google Scholar 

  • Ergashev AE (1979) The origin and typology of the Central Asian lakes and their algal flora. Int Rev Gesamten Hydrobiol 64:629–642

    Google Scholar 

  • Fey M, Korr C, Maidana NI, Carrevedo ML, Corbella H, Dietrich S, Haberzettl T, Kuhn G, Lücke A, Mayr C, Ohlendorf C, Paez MM, Quintana FA, Schäbitz F, Zolitschka B (2009) Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Long-Term Multi-Proxy Clim Reconstr Dyn S Am LOTRED-SA State Art Perspect 281:363–375. doi:10.1016/j.palaeo.2009.01.012

    Google Scholar 

  • Fuchs MC, Gloaguen R, Merchel S, Pohl E, Sulaymonova VA, Andermann C, Rugel G (2015) Millennial erosion rates across the Pamir based on 10 Be concentrations in fluvial sediments: dominance of topographic over climatic factors. Earth Surf Dyn Discuss 3:83–128

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world. Springer, Berlin

    Google Scholar 

  • Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178. doi:10.1016/j.quascirev.2005.02.006

    Article  Google Scholar 

  • Huang X, Oberhänsli H, von Suchodoletz H, Prasad S, Sorrel P, Plessen B, Mathis M, Usubaliev R (2014) Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul. Quat Sci Rev 103:134–152. doi:10.1016/j.quascirev.2014.09.012

    Article  Google Scholar 

  • Kalugin I, Daryin A, Smolyaninova L, Andreev A, Diekmann B, Khlystov O (2007) 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quat Res 67:400–410. doi:10.1016/j.yqres.2007.01.007

    Article  Google Scholar 

  • Komatsu T, Tsukamoto S (2015) Late Glacial lake-level changes in the Lake Karakul basin (a closed glacierized-basin), eastern Pamirs, Tajikistan. Quat Res 83:137–149. doi:10.1016/j.yqres.2014.09.001

    Article  Google Scholar 

  • Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117. doi:10.1002/jqs.1438

    Article  Google Scholar 

  • Landmann G, Reimer A, Lemcke G, Kempe S (1996) Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey. Palaeogeogr Palaeoclimatol Palaeoecol 122:107–118. doi:10.1016/0031-0182(95)00101-8

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285. doi:10.1051/0004-6361:20041335

    Article  Google Scholar 

  • Lauterbach S, Witt R, Plessen B, Dulski P, Prasad S, Mingram J, Gleixner G, Hettler-Riedel S, Stebich M, Schnetger B, Schwalb A, Schwarz A (2014) Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene 24:970–984. doi:10.1177/0959683614534741

    Article  Google Scholar 

  • Liu X, Herzschuh U, Wang Y, Kuhn G, Yu Z (2014) Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett 41:6265–6273. doi:10.1002/2014GL060444

    Article  Google Scholar 

  • Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201. doi:10.1126/science.1228026

    Article  Google Scholar 

  • Mathis M, Sorrel P, Klotz S, Huang X, Oberhänsli H (2014) Regional vegetation patterns at lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia). Quat Sci Rev 89:169–185. doi:10.1016/j.quascirev.2014.01.023

    Article  Google Scholar 

  • Mayer LM, Macko SA, Mook WH, Murray S (1981) The distribution of bromine in coastal sediments and its use as a source indicator for organic matter. Org Geochem 3:37–42. doi:10.1016/0146-6380(81)90011-5

    Article  Google Scholar 

  • Meyers PA, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372. doi:10.1023/A:1008073732192

    Article  Google Scholar 

  • Mischke S, Rajabov I, Mustaeva N, Zhang C, Herzschuh U, Boomer I, Brown ET, Andersen N, Myrbo A, Ito E, Schudack ME (2010) Modern hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan): a reconnaissance study. Palaeogeogr Palaeoclimatol Palaeoecol 289:10–24. doi:10.1016/j.palaeo.2010.02.004

    Article  Google Scholar 

  • Mischke S, Weynell M, Zhang C, Wiechert U (2013) Spatial variability of 14C reservoir effects in Tibetan Plateau lakes. Quat Int 313–314:147–155. doi:10.1016/j.quaint.2013.01.030

    Article  Google Scholar 

  • Morrill C, Overpeck JT, Cole JE, Liu K, Shen C, Tang L (2006) Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat Res 65:232–243. doi:10.1016/j.yqres.2005.02.014

    Article  Google Scholar 

  • Murari MK, Owen LA, Dortch JM, Caffee MW, Dietsch C, Fuchs M, Haneberg WC, Sharma MC, Townsend-Small A (2014) Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan–Tibetan orogen. Quat Sci Rev 88:159–182. doi:10.1016/j.quascirev.2014.01.013

    Article  Google Scholar 

  • Ni A, Nurtayev B, Petrov M, Tikhanovskaya A, Tomashevskaya I (2004) The share of a glacial feeding in water balance of Aral Sea and Karakul Lake. J Mar Syst 47:143–146. doi:10.1016/j.jmarsys.2003.12.017

    Article  Google Scholar 

  • Owen LA, Dortch JM (2014) Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quat Sci Rev 88:14–54. doi:10.1016/j.quascirev.2013.11.016

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle J-P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning AS et al (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4:461–475

    Article  Google Scholar 

  • Ramaswamy C (1962) Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the sub-tropical westerly jet streams. Tellus 14:337–349. doi:10.1111/j.2153-3490.1962.tb01346.x

    Article  Google Scholar 

  • Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304

    Article  Google Scholar 

  • Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227. doi:10.1016/S0031-0182(01)00339-X

    Article  Google Scholar 

  • Romanovsky VV (2002) Water level variations and water balance of Lake Issyk-Kul. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment. Springer, Netherlands, pp 45–57

    Chapter  Google Scholar 

  • Seong YB, Owen LA, Yi C, Finkel RC (2009) Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull 121:348–365. doi:10.1130/B26339.1

    Article  Google Scholar 

  • Shen J, Liu X, Wang S, Matsumoto Ryo (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int 136:131–140. doi:10.1016/j.quaint.2004.11.014

    Article  Google Scholar 

  • Strecker MR, Frisch W, Hamburger MW, Ratschbacher L, Semiletkin S, Zamoruyev A, Sturchio N (1995) Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan. Tectonics 14:1061–1079. doi:10.1029/95TC00927

    Article  Google Scholar 

  • Sun D, Bloemendal J, Rea DK, Vandenberghe J, Jiang F, An Z, Su R (2002) Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment Geol 152:263–277. doi:10.1016/S0037-0738(02)00082-9

    Article  Google Scholar 

  • Taft L, Mischke S, Wiechert U, Leipe C, Rajabov I, Riedel F (2014) Sclerochronological oxygen and carbon isotope ratios in Radix (Gastropoda) shells indicate changes of glacial meltwater flux and temperature since 4,200 cal yr BP at Lake Karakul, eastern Pamirs (Tajikistan). J Paleolimnol 52:27–41. doi:10.1007/s10933-014-9776-4

    Article  Google Scholar 

  • Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol Isot Geosci Sect 80:261–279. doi:10.1016/0168-9622(90)90009-2

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

    Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153. doi:10.1111/j.1365-3091.1987.tb00566.x

    Article  Google Scholar 

  • Van Campo E, Gasse F (1993) Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13,000 yr B.P. Quat Res 39:300–313. doi:10.1006/qres.1993.1037

    Article  Google Scholar 

  • Vandenberghe J (2013) Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Sci Rev 121:18–30

    Article  Google Scholar 

  • Vandenberghe J, Renssen H, van Huissteden K, Nugteren G, Konert M, Lu H, Dodonov A, Buylaert J-P (2006) Penetration of Atlantic westerly winds into Central and East Asia. Quat Sci Rev 25:2380–2389. doi:10.1016/j.quascirev.2006.02.017

    Article  Google Scholar 

  • Walling DE, Moorehead PW (1989) The particle size characteristics of fluvial suspended sediment: an overview. Hydrobiologia 176–177:125–149. doi:10.1007/BF00026549

    Article  Google Scholar 

  • Wang R, Zhang Y, Wünnemann B, Biskaborn BK, Yin H, Xia F, Zhou L, Diekmann B (2015) Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China. J Asian Earth Sci 107:140–150. doi:10.1016/j.jseaes.2015.04.008

    Article  Google Scholar 

  • Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29:503–549. doi:10.1007/BF02775085

    Article  Google Scholar 

  • Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438. doi:10.1016/j.epsl.2008.07.054

    Article  Google Scholar 

  • Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254. doi:10.1890/070140

    Article  Google Scholar 

  • Wu G, Yao T, Xu B, Li Z, Tian L, Duan K, Wen L (2006) Grain size record of microparticles in the Muztagata ice core. Sci China Ser D 49:10–17. doi:10.1007/s11430-004-5093-5

    Article  Google Scholar 

  • Zech R, Abramowski U, Glaser B, Sosin P, Kubik PW, Zech W (2005) Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quat Res 64:212–220. doi:10.1016/j.yqres.2005.06.002

    Article  Google Scholar 

  • Zhang C, Mischke S (2009) A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau. Quat Sci Rev 28:1970–1983. doi:10.1016/j.quascirev.2009.03.007

    Article  Google Scholar 

  • Zhao Y, Yu Z, Chen F, Zhang J, Yang B (2009) Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Sci Rev 97:242–256. doi:10.1016/j.earscirev.2009.10.007

    Article  Google Scholar 

  • Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015) Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep 5:13318. doi:10.1038/srep13318

    Article  Google Scholar 

  • Ziegler M, Jilbert T, de Lange GJ, Lourens LJ, Reichart G-J (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosystems. doi:10.1029/2007GC001932

    Google Scholar 

Download references

Acknowledgements

We thank Zafar Mahmoudov and Tim Jonas for help during fieldwork, Romy Zibulski for identification and discussions of the moss remains, and Matthias Röhl for support with core description. We furthermore thank Mark Brenner and two anonymous reviewers for their comments, which helped to improve this manuscript. We appreciate the financial support of the DFG (Grants Mi 730/15-1 and 15-2; and PhD scholarship for LH in the DFG Graduate School 1364).

Data Availability

The datasets generated and analysed for this study are available at Pangaea, doi:10.1594/PANGAEA.876024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liv Heinecke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinecke, L., Mischke, S., Adler, K. et al. Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ~29 cal ka. J Paleolimnol 58, 317–334 (2017). https://doi.org/10.1007/s10933-017-9980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9980-0

Keywords

Navigation