Skip to main content

Advertisement

Log in

Natural and anthropogenic forcing of Holocene lake ecosystem development at Lake Uddelermeer (The Netherlands)

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Lake Uddelermeer (The Netherlands) is characterized by turbid conditions and annual blooms of toxic cyanobacteria, which are supposed to be the result of increased agricultural activity in the twentieth century AD. We applied a combination of classic palaeoecological proxies and novel geochemical proxies to the Holocene sediment record of Lake Uddelermeer (The Netherlands) in order to reconstruct the natural variability of the lake ecosystem and to identify the drivers of the change to the turbid conditions that currently characterize this lake. We show that the lake ecosystem was characterized by a mix of aquatic macrophytes and abundant phytoplankton between 11,500 and 6000 cal year BP. A transition to a lake ecosystem with clear-water conditions and relatively high abundances of ‘isoetids’ coincides with the first signs of human impact on the landscape around Lake Uddelermeer during the Early Neolithic (ca. 6000 cal year BP). An abrupt and dramatic ecosystem shift can be seen at ca. 1030 cal year BP when increases in the abundance of algal microfossils and concentrations of sedimentary pigments indicate a transition to a turbid phytoplankton-dominated state. Finally, a strong increase in concentrations of plant and faecal biomarkers is observed around 1950 AD. Canonical Correspondence Analysis suggests that reconstructed lake ecosystem changes are best explained by environmental drivers that show long-term gradual changes (sediment age, water depth). These combined results document the long-term anthropogenic impact on the ecosystem of Lake Uddelermeer and provide evidence for pre-Industrial Era signs of eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Battarbee R (1999) The importance of palaeolimnology to lake restoration. Hydrobiologia 395(396):149–159

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138

    Article  Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Birks HJB, Lotter AF (1994) The impact of the Laacher See Volcano (11000 yr B.P.) on terrestrial vegetation and diatoms. J Paleolimnol 11:313–322

    Article  Google Scholar 

  • Bjerring R, Bradshaw EG, Amsnick SL, Johansson LS, Odgaard V, Nielsen AB, Jeppsen E (2008) Inferring recent changes in the ecological state of 21 Danish candidate reference lakes (EU Water Framework Directive) using palaeolimnology. J Appl Ecol 45:1566–1575

    Article  Google Scholar 

  • Bohncke SJP (1999) Palynologisch verslag betreffende de archiefwaarde van de bovenste twee meter sediment van het Uddelermeer. Vrije Universiteit Amsterdam, Amsterdam

    Google Scholar 

  • Bohncke SJP, Wijmstra L, van der Woude J, Sohl H (1988) The Late-Glacial infill of three lake successions in The Netherlands: regional vegetation history in relation to NW European vegetation developments. Boreas 17:385–402

    Article  Google Scholar 

  • Boston HL, Adams MS (1987) Productivity, growth and photosynthesis of two small ‘isoetid’ plants Littorella uniflora and Isoetes macrospora. J Ecol 75:333–350

    Article  Google Scholar 

  • Bradshaw EG, Rasmussen P, Nielsen H, Anderson NJ (2005a) Mid- to late-Holocene land-use change and lake development at Dalland Sø, Danmark: trends in lake primary production as reflected by algal and macrophyte remains. Holocene 15:1130–1142

    Article  Google Scholar 

  • Bradshaw EG, Rasmussen P, Odgaard BV (2005b) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. Holocene 15:1152–1162

    Article  Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic Chironomidae larvae in palaeoecology (Quaternary Research Association Technical Guide No. 10). Quaternary Research Association, London

  • Bull IA, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) The origin of faeces by means of biomarker detection. Environ Intern 27:647–654

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771

    Article  Google Scholar 

  • Cheng W, Sun L, Kimpe LE, Mallory ML, Smol JP, Gallant LR, Li J, Blais JM (2016) Sterols and Stanols preserved in pond sediments track seabird biovectors in a high arctic environment. Environ Sci Technol 50:9351–9360

    Article  Google Scholar 

  • Dapples F, Lotter AF, van Leeuwen JFN, van der Knaap WO, Dimitriadis S, Oswald D (2002) Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. J Paleolimnol 27:239–248

    Article  Google Scholar 

  • Engels S, van Geel B (2012) The effects of changing solar activity on climate: contributions from palaeoclimatological studies. J Space Weather Space Clim 2:A09

    Article  Google Scholar 

  • Engels S, Bohncke SJP, Bos JAA, Brooks SJ, Heiri O, Helmens KF (2008a) Chironomid-based palaeotemperature estimates for northeast Finland during Oxygen isotope stage 3. J Paleolimnol 40:49–61

    Article  Google Scholar 

  • Engels S, Bohncke SJP, Heiri O, Nyman M (2008b) Intraregional variability in chironomid-inferred temperature estimates and the influence of river inundations on lacustrine chironomid assemblages. J Paleolimnol 40:129–142

    Article  Google Scholar 

  • Engels S, van Geel B, Buddelmeijer N, Brauer A et al (2015) High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) et al. central European records. Rev Palaeobot Palynol 221:160–170

    Article  Google Scholar 

  • Engels S, Bakker MAJ, Bohncke SJP, Cerli C, Hoek WZ, Jansen B, Peters T, Renssen H, Sachse D, van Aken JM, van den Bos V, van Geel B, van Oostrom R, Winkels T, Wolma M (2016) Centennial-scale lake level lowstand at Lake Uddelermeer (The Netherlands) indicates changes in moisture source region prior to the 2.8-kyr event. Holocene 26:1075–1091

    Article  Google Scholar 

  • Evershed RP, Bethell PH, Reynolds PJ, Walsh NJ (1997) 5β-Stigmastanol and related 5β-Stanols as biomarkers of manuring: analysis of modern experimental material and assessment of the archaeological potential. J Archaeol Sci 24:485–495

    Article  Google Scholar 

  • Eyssen HJ, Parmentier GG, Compernolle FC, De Pauw G, Piessens-Denef M (1973) Biohydrogenation of Sterols by Eubacterium ATCC 21,408—Nova Species. Eur J Biochem 36:411–421

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Farmer AM, Spence DHN (1986) The growth strategies and distribution of isoetids in Scottish freshwater lochs. Aquat Bot 26:247–258

    Article  Google Scholar 

  • Groenewoudt BJ, Schut PAC, van der Heijden RFJG, Peeters JHM, Wispelwey MH (2006) Een inventariserend veldonderzoek bij de Hunneschans (Uddel, Gelderland). Rapportage Archeologische Monumentenzorg 143. RACM: Amersfoort

  • Grontmij (1996) Restauratieplan Uddelermeer. Grontmij Milieu, Arnhem

    Google Scholar 

  • Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756

    Article  Google Scholar 

  • Heiri O, Cremer H, Engels S, Hoek W, Peeters W, Lotter AF (2007) Late-Glacial summer temperatures in the Northwest European lowlands: a new chironomid record from Hijkermeer, the Netherlands. Quat Sci Rev 26:2420–2437

    Article  Google Scholar 

  • Hillbrand M, van Geel B, Hasenfratz A, Hadorn P, Haas JN (2014) Non-pollen palynomorphs show human- and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24:559–568

    Article  Google Scholar 

  • Hübener T, Adler S, Werner P, Schult M, Erlenkeuser H, Meyer H, Bahnwart M (2009) A multi-proxy paleolimnological reconstruction of trophic state reference conditions for stratified carbonate-rich lakes in northern Germany. Hydrobiologia 631:303–327

    Article  Google Scholar 

  • Juggins S (2011) C2 data analysis (version 1.7.4). Newcastle University, Newcastle

  • Juggins S (2017) Rioja: analysis of quaternary science data, R package version (0.9-15). (http://cran.r-project.org/package=rioja)

  • Kirilova EP, van Hardenbroek M, Heiri O, Cremer H, Lotter AF (2010a) 500 years of trophic-state history of a hypertrophic Dutch dike-breach lake. J Paleolimnol 43:829–842

    Article  Google Scholar 

  • Kirilova EP, Cremer H, Heiri O, Lotter AF (2010b) Eutrophication of moderately deep Dutch lakes during the past century: flaws in the expectations of water management? Hydrobiologia 637:157–171

    Article  Google Scholar 

  • Kuneš P, Odgaard BV, Gaillard M-J (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–2164

    Article  Google Scholar 

  • Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127

    Article  Google Scholar 

  • Lotter AF (2001) The palaeolimnology of Soppensee (central Switzerland), as evidenced by diatom, pollen, and pigment-analyses. J Paleolimnol 25:65–79

    Article  Google Scholar 

  • Lotter AF, Birks HJB (1993) The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. J Quat Sci 8:263–276

    Article  Google Scholar 

  • Lotter AF, Birks HJB (2003) The Holocene palaeolimnology of Sägistalsee and its environmental history—a synthesis. J Paleolimnol 30:333–342

    Article  Google Scholar 

  • MacDonald IA, Bokkenheuser VD, Winter J, McLernon AK, Mosbach EH (1983) Degradation of fecal sterols in the human gut. J Lipid Res 24:675–694

    Google Scholar 

  • McGowan S (2013) Pigment studies. In: Elias SA (ed) The encyclopedia of quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 326–338

    Chapter  Google Scholar 

  • McGowan S, Leavitt PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV (2005) Controls of algal abundance and community composition during ecosystem state change. Ecol 86:2200–2211

    Article  Google Scholar 

  • Meyer-Jacob C, Tolu J, Bigler C, Yang H, Bindler R (2015) Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring. Proc Nat Acad Sci 112:6579–6584

    Article  Google Scholar 

  • Millet L, Giguet-Covex C, Verneaux V, Druart J-C, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978

    Article  Google Scholar 

  • Moller Pillot HKM (2009) Chironomidae Larvae—biology and ecology of the chironomini. KNNV Publishing, Zeist

    Google Scholar 

  • Moller Pillot HKM (2013) Chironomidae Larvae—biology and ecology of the aquatic orthocladiinae. KNNV Publishing, Zeist

    Google Scholar 

  • Moller Pillot HKM, Vallenduuk HJ (2007) Chironomidae Larvae—biology and ecology of the chironomini. KNNV Publishing, Zeist

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  • Nienhuis PH, Bakker JP, Grootjans AP, Gulati RD, de Jonge VN (2002) The state of the art of aquatic and semi-aquatic ecological restoration projects in the Netherland. Hydrobiologia 478:219–233

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan

  • Polak B (1959) Palynology of the Uddelermeer. Acta Botanica Neerlandica 8:547–571

    Article  Google Scholar 

  • Punt W, Clarke GCS (1984) The Northwest European Pollen Flora, IV. Elsevier, Amsterdam

    Google Scholar 

  • Rasmussen P, Anderson NJ (2005) Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr 32:1993–2005

    Article  Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414

    Article  Google Scholar 

  • Roelofs JGM, Schuurkes JAAR, Smits AJM (1984) Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquat Bot: 389–411

  • Rørslett B, Brettum P (1989) The genus Isoëtes in Scandinavia: an ecological review and perspectives. Aquat Bot 35:223–261

    Article  Google Scholar 

  • Sand-Jensen K (1978) Metabolic adaptation and vertical zonation of Littorella uniflora (L.) Aschers and Isoetes lacustris (L.). Aquat Bot 4:1–10

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  • Slicher van Bath BH (1987) De agrarische Geschiedenis van West-Europa (500–1850). Het Spectrum, Utrecht

    Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environm Pollut 100:179–196

    Article  Google Scholar 

  • Smol JP (2008) Pollution of lake and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Thienemann M, Masi A, Kusch S, Sadori L, John S, Francke A, Wagner B, Rethemeyer J (2017) Organic geochemical and palynological evidence for Holocene natural and anthropogenic environmental change at Lake Dojran (Macedonia/Greece). The Holocene 27:1103–1114

    Article  Google Scholar 

  • Van den Bos V, Engels S, Bohncke SJP, Cerli C, Jansen B, Kalbitz K, Peterse F, Renssen H, Sachse D (2017) Late Holocene changes in vegetation and atmospheric circulation at Lake Uddelermeer (The Netherlands) reconstructed using lipid biomarkers and compound specific δD analysis. J Quat Sci. https://doi.org/10.1002/jqs.3006

    Google Scholar 

  • Van der Molen DT, Portielje R (1999) Multi-lake studies in the Netherlands: trends in eutrophication. Hydrobiologia 408:359–365

    Article  Google Scholar 

  • Van Eeden FW (1886) Onkruid. Botanische wandelingen van F.W. van Eeden, Tjeenk Willink

    Google Scholar 

  • Van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev Palaeobot Palynol 25:1–120

    Article  Google Scholar 

  • Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal and siliceous indicators. Kluwer, Dordrecht, pp 99–119

    Chapter  Google Scholar 

  • Van Geel B, Mur LA, Ralskajasiewiczowa M, Goslar T (1994) Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev Palaeobot Palynol 83:97–105

    Article  Google Scholar 

  • Van Geel B, Buurman J, Waterbolk HT (1996) Archeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. J Quat Sci 11:451–460

    Article  Google Scholar 

  • Vane CH, Kim AW, McGowan S, Leng MJ, Heaton THE, Kendrick CP, Coombs P, Yang H, Swann GEA (2010) Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes. Sci Total Environ 409:345–356

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    Article  Google Scholar 

  • Walker MJC, Berkelhammer M, Björk S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27:649–659

    Article  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  Google Scholar 

  • Wiik E, Bennion H, Sayer CD, Davidson TA, McGowan S, Patmore IR, Clarke SJ (2015) Ecological sensitivity of marl lakes to nutrient enrichment: evidence from Hawes Water, UK. Freshw Biol 60:2226–2247

    Article  Google Scholar 

  • Woodbridge J, Rm Fyfe, Roberts N, Downey S, Edinborough K, Shennan S (2014) The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change. J Archaeol Sci 51:216–224

    Article  Google Scholar 

Download references

Acknowledgements

Tieke Poelen and Kroondomein het Loo are thanked for granting permission to access the site. We thank Nelleke van Asch, Erik J de Boer, Remko Engels, Wim Z Hoek, Andy F Lotter, Julia Sassi and Hessel Woolderink for help during fieldwork; Annemarie Philip for preparing pollen samples; Leo Hoitinga, Joke Westerveld and Pieter Slot for laboratory assistance; Christopher Bronk Ramsey, Johannes van der Plicht and Christine S Lane for help with the chronological work. The research of SE is financed by the Netherlands Organisation for Scientific Research (NWO, Project 863.11.009). The contribution of JAJD represents part of the BBSRC funded programmes at Rothamsted Research on Sustainable Soil Function, and Bioenergy and Climate Change. We thank the reviewers and editors for their helpful comments on a previous version of the manuscript. In loving memory of Sjoerd Bohncke, our friend and colleague who is dearly missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Engels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engels, S., van Oostrom, R., Cherli, C. et al. Natural and anthropogenic forcing of Holocene lake ecosystem development at Lake Uddelermeer (The Netherlands). J Paleolimnol 59, 329–347 (2018). https://doi.org/10.1007/s10933-017-0012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-0012-x

Keywords

Navigation