Skip to main content

Advertisement

Log in

Geochemical imprints of coupled paleoenvironmental and provenance change in the lacustrine sequence of Orog Nuur, Gobi Desert of Mongolia

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

In the arid environment, due to the scarcity of a continuous terrestrial archive, lacustrine sequences are often employed as a paleoenvironmental repository. However, numerous spatial and temporal heterogeneities exist concerning previously studied sites in arid central Asia. Furthermore, surveys using a XRF core scanning technique on lacustrine sequences retrieved in hyperarid desert settings are largely rare. Hence, two parallel sediment cores (ONW I; ONW II) were retrieved from Orog Nuur, in the Gobi Desert of Mongolia. Continuous, high-resolution elemental abundances at a 1-cm scanning step size were examined in core ONW II using XRF core scanning. To constrain the data quality, elements with high error margins relative to measured peak areas and those elements/proxies below the significance level during the multivariate statistics are excluded for environmental/provenance implications. Based on multivariate statistical evaluation, the bulk-geochemistry of the core sediments are governed by (1) grain-size composition, (2) authigenic productivity (Ca, Cl, CaCO3) in an alkaline environment, (3) allochthonous organic material (TOC and C/Natomic), and (4) terrigenous input via fluvial inflows, as well as quasi-constant aeolian input through the late Quaternary (Al, Si, K, Ti, and Fe). Disparate source lithotypes, as well as authigenic productivity of the lake system existed before and after Termination I. The Holocene was dominated by a distinct high productivity alkaline environment with more felsic and alkaline input relative to the late Pleistocene. This might be attributed to an increased hydrodynamic strength of riverine inflow and/or intensified erosion and weathering of felsic source rocks in the upper catchment of the Orog Nuur. Therefore, in order to gain a better understanding of the bulk-geochemistry of lake sediments, the coupled provenance and environmental signatures, as well as land surface processes in the catchment need to be systematically discerned. Thus, the XRF core scanning data obtained in this study would have practical and complimentary merit for other lacustrine studies focused on the desert realm across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baljinnyam I, Bayasgalan A, Brorisov BA, Cisternas A, Demyanovich MG, Ganbaatar L, Kochetkov VM, Kurushin RA, Molnar P, Philip H, Vashchilov YY (1993) Ruptures of major earthquakes and active deformation in Mongolia and its surroundings. Geol Soc Am Mem 181:26–52

    Google Scholar 

  • Bertrand S, Hughen K, Giosan L (2015) Limited influence of sediment grain size on elemental XRF core scanner measurements. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 473–490

  • Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 2: physical and geochemical methods. Developments in paleoenvironmental research, vol 2, pp 83–130

  • Bridge JS, Demicco RV (2008) Earth surface processes, landforms and sediment deposits. Cambridge University Press, Cambridge, p 61

    Book  Google Scholar 

  • Calvert SE, Pedersen TF (2007) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel C, De Vernal A (eds) Proxies in late cenozoic paleoceanography. Developments in marine geology, vol 1, pp 567–625

  • Chen FH, Yu ZC, Yang ML, Ito E, Wang SM, Madsen DB, Huang XZ, Zhao Y, Sato T, Birks HJB, Bommer I, Chen JH, An CB, Wünnemann B (2008) Holocene moisture evolution in arid central Asia and its out-of phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364

    Article  Google Scholar 

  • Chilingar GV, Zenger DH, Bissell HJ, Wolf KH (1979) Dolomites and dolomitization. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks. Developments in sedimentology, vol 25A, pp 428–536

  • Conroy JL, Overpeck JT, Cole JE, Liu KB, Wang L, Ducea MN (2013) Dust and temperature influences on glaciofluvial sediment deposition in southwestern Tibet during the last millennium. Glob Planet Change 107:132–144

    Article  Google Scholar 

  • Costa KM, Russel JM, Vogel H, Bijaksana S (2014) Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 417:467–475

    Article  Google Scholar 

  • Cunningham WD (2005) Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogeny. Earth Planet Sci Lett 240:436–444

    Article  Google Scholar 

  • Dapples EC (1979) Silica as an agent in diagenesis. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks. Developments in sedimentology, vol 25A, pp 99–142

  • Davies SJ, Lamb HF, Roberts SJ (2015) Micro-XRF core scanning in palaeolimnology: recent developments. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 189–226

  • Diekmann B, Hofmann J, Heinrich R, Fütterer DK, Röhl U, Wie KY (2008) Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Mar Geol 255:83–95

    Article  Google Scholar 

  • Dulski P, Brauer A, Mangili C (2015) Combined µ-XRF and microfacies techniques for lake sediment analyses. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 325–349

  • Felauer T (2011) Jungquartäre Landschafts und Klimagschichte der Südmongolei. Dissertation an der Fakultät für Georessourcen und Materialtechnik der RWTH Aachen. http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3666/

  • Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  • Hunt JE, Croudace IW, MacLachland SE (2015) Use of calibrated ITRAX XRF data in determining turbidite geochemistry and provenance in Agadir Basin, Northwest African passive margin. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 127–146

  • Jarvis S, Croudace IW, Rothwell RG (2015) Parameter optimization for the ITRAX core Scanner. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 535–562

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. Geol Soc Am Spec Pap 284:1–20

    Google Scholar 

  • Kazancı N, Gulbabazadeh T, Leroy SAG, Ataselim Z, Gürbüz A (2016) Aeolian control on the deposition of high altitude lacustrine basins in the Middle East: The case of Lake Neor, NW Iran. Quat Int. doi:10.1016/j.quaint.2015.11.040

    Google Scholar 

  • Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117

    Article  Google Scholar 

  • Lamb H, Bates C, Coombes P, Marshall M, Umer M, Davies S, Dejen E (2007) Late Pleistocene desiccation of Lake Tana, source of the Blue Nile. Quat Sci Rev 26:287–299. doi:10.1016/j.quascirev.2006.11.020

    Article  Google Scholar 

  • Lauterbach S, Brauer A, Andersen N, Danielopol D, Dulski P, Hüls M, Milecka K, Namiotko T, Obremska M, Grafenstein U, Participants D (2011) Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-alpine Lake Mondsee (northeastern Alps). J Quat Sci 26:253–267

    Article  Google Scholar 

  • Lee MK, Lee YI, Lim HS, Lee JI, Choi JH, Yoon HI (2011) Comparison of radiocarbon and OSL dating methods for a late Quaternary sediment core from Lake Ulaan, Mongolia. J Paleolimnol 45:127–135

    Article  Google Scholar 

  • Lehmkuhl F, Lang A (2001) Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Central Mongolia). J Quat Sci 16:69–87

    Article  Google Scholar 

  • Lehmkuhl F, Klinge M, Rother H, Hülle D (2016) Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Ann Glaciol 57:169–178

    Article  Google Scholar 

  • Leinen M (1989) The late Quaternary record of atmospheric transport to the northwest Pacific from Asia. In: Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer Academic Publishers, Dordrecht, pp 693–732

  • Martinez-Ruiz F, Kastner M, Gallego-Torres D, Rodrigo-Gámiz M, Nieto-Moreno V, Ortega-Huertas M (2015) Paleoclimate and paleoceanography over the past 20,000 years in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat Sci Rev 107:25–46

    Article  Google Scholar 

  • Melles M, Brigham-Grette J, Minyuk PS, Nowaczyk NR, Wennrich V, DeConto RM, Anderson PM, Andreev AA, Coletti A, Cook TL, Haltia-Hovi E, Kukkonen M, Lozhkin AV, Rosén P, Tarasov P, Vogel H, Wagner B (2012) 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337:315–320

    Article  Google Scholar 

  • Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Millot G (1970) Geology of clays, weathering, sedimentology, geochemistry. Springer, Vienna, pp 357–381

    Google Scholar 

  • Mischke S, Herzschuh U, Zhang CJ, Bloemendal J, Riedel F (2005) A late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Glob Planet Change 46:337–359

    Article  Google Scholar 

  • Mischke S, Weynell M, Zhang CJ, Wiechert U (2013) Spatial variability of 14C reservoir effects in Tibetan Plateau lakes. Quat Int 313–314:147–155

    Article  Google Scholar 

  • Mukherji AK (1970) Analytical chemistry of zirconium and hafnium. Pergamon Press, Oxford, pp 1–11

    Book  Google Scholar 

  • Murad W (2011) Palynological studies on the late quaternary palaeoecology of the Gobi Desert in Mongolia. Ph.D. thesis, Georg-August-Universität Göttingen, p 128

  • Nesbitt HW, Young GM (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 42:341–358

    Article  Google Scholar 

  • Nilson E, Lehmkuhl F (2001) Interpreting temporal patterns in the late Quaternary dust flux from Asia to the North Pacific. Quat Int 76(77):67–76

    Article  Google Scholar 

  • NIOZ, Avaatech (2007) XRF core scanner user manual version 2.0. Royal Netherlands Institute of Sea Research and Avaatech XRF Core Scanner Technology

  • Norman MD, De Deckker P (1990) Trace metals in lacustrine and marine sediments: a case study from the Gulf of Carpentaria, Northern Australia. Chem Geol 82:299–318

    Article  Google Scholar 

  • Ohlendorf C, Wennrich V, Enters D (2015) Experiences with XRF-scanning of long sediment records. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 351–372

  • Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchronicity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1872–1885

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele FX (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1973) Sand and sandstone. Springer, New York, pp 24–63

    Book  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, HattŽ C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaise KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Richter RO, van der Gaast S, Koster R, Vaars A, Gieles R, de Stigter HC, de Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis. Geological Society London Special Publications, vol 267, pp 39–50

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Rother H, Lehmkuhl F, Fink D, Nottebaum V (2014) Surface exposure dating reveals MIS-3 glacial maximum in the Khangai Mountains of Mongolia. Quat Res 82:297–308

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde, 15th edn. Spektrum Akademischer Verlag, Berlin

    Google Scholar 

  • Schillereff DN, Chiverrell RC, Croudace IW, Boyle JF (2015) An inter-comparison of µXRF scanning analytical methods for lake sediments. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 583–600

  • Schulte P, Lehmkuhl F, Steininger F, Loibl D, Lockot G, Protze J, Fischer P, Stauch G (2016) Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. CATENA 137:392–405

    Article  Google Scholar 

  • Shanahan TM, Overpeck JT, Hubeny JB, King J, Hu FS, Hughen K, Miller G, Black J (2008) Scanning micro-X-ray fluorescence elemental mapping: a new tool for the study of laminated sediment records. Geochem Geophys Geosyst 9:Q02016. doi:10.1029/2007GC001800

    Article  Google Scholar 

  • Sinha R, Smykatz-Kloss W, Stüben D, Harrison SP, Berner Z, Kramar U (2006) Late Quaternary paleoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeogr Palaeoclimatol Palaeoecol 233:252–270

    Article  Google Scholar 

  • Stein R, Grobe H, Wahsner M (1994) Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Mar Geol 119:269–285

    Article  Google Scholar 

  • Stuiver MP, Reimer J, Bard E, Burr GS, Hughen KA, Kromer B, McCormac G, Jvd Plicht, Spurk M (1998) INTCAL98 radiocarbon age calibration. Radiocarbon 40:1041–1083

    Article  Google Scholar 

  • Tarasov PE, Bezrukova E, Karabanov E, Nakagawa T, Wagner M, Kulagina N, Letunova P, Abzaeva A, Granoszewski W, Riedel F (2007) Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr Palaeoclimatol Palaeoecol 252:440–457

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Wiley, Oxford, pp 164–190

    Book  Google Scholar 

  • Vogt C (1997) Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes. Rep Polar Res 251:1–309

    Google Scholar 

  • Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanner for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438

    Article  Google Scholar 

  • Wirth SB, Gilli A, Niemann H, Dahl TW, Ravasi D, Sax N, Hamann Y, Peduzzi R, Peduzzi S, Tonolla M, Lehmann MF, Anselmetti FS (2013) Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: the example of meromictic Lake Cadagno (Swiss Alps). Geochim Cosmochim Acta 120:220–238

    Article  Google Scholar 

  • Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal J, Diekmann B, Hartmann K, Krois J, Riedel F, Arya N (2010) Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quat Sci Rev 29:1138–1155

    Article  Google Scholar 

  • Yang XP, Scuderi LA (2010) Hydrological and climatic changes in deserts of China since the late Pleistocene. Quat Res 73:1–9

    Article  Google Scholar 

  • Yu G, Cui F, Shi YF, Zheng Y (2007) Late marine isotope stage 3 paleoclimate for East Asia: a data-modal comparison. Palaeogeogr Palaeoclimatol Palaeoecol 250:167–183

    Article  Google Scholar 

  • Yu KF, Hartmann K, Nottebaum V, Stauch G, Lu HY, Zeeden C, Yi SW, Wünnemann B, Lehmkuhl F (2016) Discriminating sediment archives and sedimentary processes in the arid endorheic Ejina Basin, NW China using a robust geochemical approach. J Asian Earth Sci 119:128–144

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the German Research Foundation (LE 730/16-1), China Scholarship Council (201306190112), and National Natural Science Foundation of China (41701232). Fieldwork was supported by the Institute of Geography of the Mongolian Academy of Sciences (D Dorjgotov, A Tschimegsaichan). Radiocarbon dating was financed by a scholarship issued to W Murad. I Pipaud helped with the geologic mapping. F Schlütz and T Felauer supported the field work. We sincerely appreciate the constructive discussion with S Mischke, J Grunert, FH Chen, ACG Henderson, HY Lu, ZD Feng, JL Xiao, D Fleitmann, P Schulte, and I Obreht during the INQUA 2015 and EGU 2016. Editors TJ Whitmore, C Zhao, M Brenner, M Riedinger-Whitmore, and three anonymous reviewers are sincerely appreciated for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifeng Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Lehmkuhl, F., Diekmann, B. et al. Geochemical imprints of coupled paleoenvironmental and provenance change in the lacustrine sequence of Orog Nuur, Gobi Desert of Mongolia. J Paleolimnol 58, 511–532 (2017). https://doi.org/10.1007/s10933-017-0007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-0007-7

Keywords

Navigation