Skip to main content

Advertisement

Log in

Combining lake core records with the limnologic model DYRESM-CAEDYM to evaluate lake response during the Little Ice Age and Medieval Climate Anomaly

  • Note
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The Little Ice Age and Medieval Climate Anomaly are two climatic intervals within the last 2000 years that had distinctive conditions in many North American paleoclimate reconstructions. During each of these intervals, the Crevice Lake, Montana paleorecord shows distinctive limnological characteristics inferred from fossil diatoms that reflect changes in temperature seasonality and lake thermal structure. A thermodynamic-ecological model, DYRESM-CAEDYM, was used to estimate climatic conditions during these time intervals and to explore the potential for linking paleo-records with lake models to evaluate the dynamic interactions of environmental variables in influencing diatom populations over time. The model effectively simulates the timing and distribution of Stephanodiscus and Cyclotella populations evident in the modern Crevice Lake observational data. In sensitivity tests altering multiple weather inputs had a greater effect on lake temperature isotherm patterns compared with changing only single variables, which suggests the interactive effect of multiple climate variables in affecting lake thermal structure. The model simulations show the importance of the rate of climate change in affecting lake thermal structure and diatom community structure, particularly during spring and early summer. The model also provides constraints on the range of changes in solar radiation, temperature, and wind speeds that may have produced the diatom communities characteristic of the Medieval Climate Anomaly, Little Ice Age, and contemporary times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson N (2000) Diatoms, temperature and climatic change. Eur J Phycol 35:307–314

    Google Scholar 

  • Anderson L (2013) Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon. Glob Planet Change 92–93:198–208

    Google Scholar 

  • Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S (2013) Climate change and the past, present, and future of biotic interactions. Science 341:499–504

    Article  Google Scholar 

  • Bracht B, Stone JR, Fritz SC (2008) A diatom record of late Holocene climate variation in the northern range of Yellowstone National Park, USA. Quatern Int 188:149–155

    Article  Google Scholar 

  • Bracht-Flyr B, Fritz S (2012) Synchronous climatic change inferred from diatom records in four western Montana lakes in the U.S. Rocky Mountains. Quatern Res 77:456–467

    Article  Google Scholar 

  • Bradbury J (1988) A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J Paleolimnol 1:115–131

    Google Scholar 

  • Castaneda I, Schouten S (2011) A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quaternary Sci Rev 30:2851–2891

    Article  Google Scholar 

  • Cleve PT, Möller JD (1882). Diatoms, part VI, No. 277–324. Esatas Edquists Boktryckeri, Uppsala

  • Cook ER, Woodhouse CA, Eakin CM, Meko D, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018

    Article  Google Scholar 

  • Cook E, Seager R, Cane M, Stahle D (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134

    Article  Google Scholar 

  • Diaz H, Stahle D (2007) Climate and cultural history in the Americas: an overview. Clim Change 83:1–8

    Article  Google Scholar 

  • Eggermont H, Henri O (2012) The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456

    Article  Google Scholar 

  • Elliott J, Irish A, Reynolds C (2010) Modelling phytoplankton dynamics in fresh waters: affirmation of the PROTECH approach to simulation. Freshw Rev 3:75–96

    Article  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920

    Article  Google Scholar 

  • Fritz SC (2008) Deciphering climate history from lake sediments. J Paleolimnol 39:5–16

    Article  Google Scholar 

  • Fritz SC, Anderson NJ (2013) The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49:349–362

    Article  Google Scholar 

  • Fritz SC, Cumming BF, Gasse F, Laird KR (2010) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 186–208

    Chapter  Google Scholar 

  • Grover J (1997) Resource competition. Chapman & Hall, London

    Book  Google Scholar 

  • Grunow A (1878) Algen und Diatomaceen aus dem Kaspischen Meere. In: Schneider O (ed) Naturwissenschaftliche Beiträge zur Kenntnis der Kaukasusländer, auf Grund seiner Sammelbeute, pp 98–132

  • Hadly EA, Kohn MH, Leonard JA, Wayne RK (1998) A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc Natl Acad Sci USA 95:6893–6896

    Article  Google Scholar 

  • Hillmer I, van Reenen P, Imberger J, Zohary T (2008) Phytoplankton patchiness and their role in the modelled productivity of a large, seasonally stratified lake. Ecol Model 218:49–59

    Article  Google Scholar 

  • Hipsey M, Romero J, Antenucci J, Hamilton D (2006a) Computational aquatic ecosystem dynamics model: CAEDYM v2, v2.3. Science Manual, pp 1–17

  • Hipsey M, Romero J, Antenucci J, Imberger J (2006b) The computational aquatic ecosystem dynamics model (CAEDYM): a versatile water quality model for coupling with hydrodynamic drivers. In: Proceedings of 7th international conference on hydroinformatics, vol 1, pp 526–533

  • Imberger J, Patterson J (1981) A dynamic reservoir simulation model-DYRESM:5, vol, transport models for inland and coastal waters. In: Proceedings of a symposium on predictive ability

  • Imberger J, Patterson J (1990) Physical limnology. Adv Appl Mech 27:303–475

    Article  Google Scholar 

  • Imerito A (2007) Dynamic reservoir simulation model DYRESM v4. Science Manual, Centre for Water Research-University of Western Australia, Perth

    Google Scholar 

  • Interlandi SJ, Kilham S, Theriot E (1999) Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone ecosystem. Limnol Oceanogr 44:668–682

    Article  Google Scholar 

  • Interlandi S, Kilham S, Theriot E (2003) Diatom-chemistry relationships in Yellowstone Lake (Wyoming) sediments: implications for climatic and aquatic processes research. Limnol Oceanogr 48:79–92

    Article  Google Scholar 

  • Ito E (2001) Application of stable isotope techniques to inorganic and biogenic carbonates. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer, Dordrecht

    Google Scholar 

  • Ito E, De Deckker P, Eggins SM (2003) Ostracodes and their shell chemistry: implications for paleohydrologic and paleoclimatologic applications. Paleon Soc Pap 9:119–152

    Google Scholar 

  • Juggins S (2013) Paleolimnological transfer functions: New paradigm or sick science? Quaternary Sci Rev 64:20–32

    Article  Google Scholar 

  • Kilham S, Theriot E, Fritz SC (1996) Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol Oceanogr 41:1052–1062

    Article  Google Scholar 

  • Koster D, Pienitz R (2006) Seasonal diatom variability and paleolimnological inferences—a case study. J Paleolimnol 35:395–416

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford SD, Bradley RS, Hughes MK, Shindell DT, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260

    Article  Google Scholar 

  • McKnight D, Smith R, Bradbury JP, Baron J (1990) Phytoplankton dynamics in three rocky mountain lakes, Colorado, USA. Arct Alp Res 22:264–274

    Article  Google Scholar 

  • Mooij W, Trolle D, Jeppesen E, Arhonditsis G, Beloipetsky PV, Chitamwebwa DBR, Degermendzhy AG, DeAngelis DL, De Senerpont Domis LN, Downing AS, Elliott JA, Fragoso CR Jr, Gaedke U, Genova SN, Gulati RD, Hakanson L, Hamilton DP, Hipsy MR, ‘t Hoen J, Hulsmann S, Hans Los F, Makler-Pick V, Petzoldt T, Prokopkin IG, Rinke K, Schep SA, Tominaga K, Van Dam AA, Van Nes EH, Wells SA, Janse JH (2010) Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat Ecol 44:633–667

    Article  Google Scholar 

  • Pages 2K Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geos 6:339–346

    Article  Google Scholar 

  • Pederson G, Gray S, Woodhouse C, Betancourt J, Fagre D, Littell J, Watson E, Luckman B, Graumlich L (2011) The unusual nature of recent snowpack declines in the North American Cordillera. Science 333:332–335

    Article  Google Scholar 

  • Ruhland K, Paterson A, Smol J (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754

    Google Scholar 

  • Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change. Biol Rev 90:522–541

    Article  Google Scholar 

  • Saros J, Rose K, Clow D, Stephens V, Nurse A, Arnett H, Stone J, Williamson C, Wolfe A (2010) Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ Sci Technol 44:4891–4896

    Article  Google Scholar 

  • Saros J, Stone J, Pederson G, Siemmons K, Spanbauer T, Schliep A, Cahl D, Williamson C, Engstrom D (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo-and paleo-ecological approaches. Ecology 93:2155–2164

    Article  Google Scholar 

  • Schladow S, Hamilton D (1997) Prediction of water quality in lakes and reservoirs: part II-model calibration, sensitivity analysis and application. Ecol Model 96:111–123

    Article  Google Scholar 

  • Shapley M, Johnson W, Engstrom D, Osterkamp W (2005) Late-Holocene flooding and drought in the Northern Great Plains, USA, reconstructed from tree rings, lake sediments and ancient shorelines. Holocene 15:29–41

    Article  Google Scholar 

  • Skvortzov (1937) Diatoms from Lake Michigan I. Am Midl Nat 18:652–658

    Article  Google Scholar 

  • Smol JP, Wolfe AP, John H, Birks B, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. P Natl Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  • Stasio BD Jr, Hill D, Kleinhans J (1996) Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnol Oceanogr 41:1136–1149

    Article  Google Scholar 

  • Steinman BA, Abbott MB, Mann ME, Ortiz JD, Feng S, Pompeani DP, Stansell ND, Anderson L, Finney BP, Bird BW (2014) Ocean-atmosphere forcing of centennial hydroclimate variability in the Pacific Northwest. Geophys Res Lett 41:2553–2560

    Article  Google Scholar 

  • Stevens LR, Stone JR, Campbell J, Fritz SC (2006) A 2200-year record of hydrologic variability from Foy Lake, Montana, USA, inferred from diatom and geochemical data. Quaternary Res 65:264–274

    Article  Google Scholar 

  • Talling J, Spencer H, Morison H (2005) The ‘shock period’: dynamics of phytoplankton during the spring-summer transition of a stratifying English lake. Hydrobiologia 533:15–28

    Article  Google Scholar 

  • Theriot E, Fritz S, Gresswell R (1997) Long-term limnological data from the larger lakes of Yellowstone National Park, Wyoming, USA. Arct Alp Res 29:304–314

    Article  Google Scholar 

  • Tilman D, Kilham S, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372

    Article  Google Scholar 

  • Trolle D, Jørgensen T, Jeppesen E (2008) Predicting the nitrogen dynamics and ecological state of deep Lake Ravn, Denmark, using the DYREMS-CAEDYM model. Limnologica 38:220–232

    Article  Google Scholar 

  • Trouet V, Diaz H, Wahl ER, Viau AE, Graham R, Graham NE, Cook ER (2013) A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environ Res Lett 8:024008

    Article  Google Scholar 

  • Weckstrom J, Korhola A, Blom T (1997) The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct Alp Res 29:75–92

    Article  Google Scholar 

  • Whitlock C, Bartlein P (1993) Spatial variations of Holocene climatic change in the Yellowstone region. Quaternary Res 39:231–238

    Article  Google Scholar 

  • Whitlock C, Dean WRJ, Stevens L, Fritz S, Bracht B, Power M (2008) A 2650-year-long record of environmental change from northern Yellowstone National Park based on a comparison of multiple proxy data. Quatern Int 188:126–138

    Article  Google Scholar 

  • Whitlock C, Dean W, Fritz S, Stevens L, Stone J, Power M, Rosenbaum J, Pierce K, Bracht-Flyr B (2012) Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA. Palaeogeogr Palaeocl 331–332:90–103

    Article  Google Scholar 

  • Wolfe AP, Gorp AV, Baron J (2003) Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153–168

    Article  Google Scholar 

  • Woodhouse CA, Meko DM, MacDonald GM, Stahle DW, Cook ER (2010) A 1200-year perspective of 21st century drought in southwestern North America. Proc Natl Acad Sci USA 107:21283–21288

    Article  Google Scholar 

Download references

Acknowledgments

Jason Antenucci provided advice at multiple times on construction and modification of the DYRESM-CAEDYM model to achieve project objectives. Christie Hendrix, Stacey Gunther, and Yellowstone National Park staff assisted with obtaining permits for fieldwork and in the installation of the weather station and data loggers. Gary, Vicki, and Blake Bracht also assisted in the field. John Gates and Robert Oglesby provided helpful general comments on model construction and sensitivity testing. Funds from NSF (EAR-0816576) and Yellowstone National Park supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandi Bracht-Flyr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracht-Flyr, B., Fritz, S.C. Combining lake core records with the limnologic model DYRESM-CAEDYM to evaluate lake response during the Little Ice Age and Medieval Climate Anomaly. J Paleolimnol 56, 79–92 (2016). https://doi.org/10.1007/s10933-016-9893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-016-9893-3

Keywords

Navigation