Skip to main content

Advertisement

Log in

Modeling of the effect of cerebrospinal fluid flow modulation on locally delivered drugs in the brain

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Cerebrospinal fluid (CSF) plays a vital role in maintaining brain homeostasis and recent research has focused on elucidating the role that convective flow of CSF plays in brain health. This paper describes a computational compartmental model of how CSF dynamics affect drug pharmacokinetics in the rat brain. Our model implements a local, sustained release approach for drug delivery to the brain. Simulation outputs highlight the potential for modulating CSF flow to improve overall drug pharmacokinetics in the central nervous system and suggest that concomitant CSF modulation and optimized drug release rates from implantable depots can be used to engineer the duration of action of chemotherapeutics. As an example, the tissue exposure of temozolomide, the standard of care treatment for glioblastoma, was modeled in conjunction with two CSF-modulating drugs: acetazolamide and verapamil. Simulations indicate that temozolomide exposure in the interstitial fluid is increased by 25% when using local sustained release delivery systems and concomitant acetazolamide delivery to reduce CSF production. This computational model can be used to produce insight on how to appropriately modulate CSF production and engineer drug release to tailor drug exposure in the brain while limiting off-target effects. As new research continues to elucidate the dynamic roles of CSF, this model can be further improved and leveraged to provide information on how CSF modulation may play a beneficial role in treating a wide variety of neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

MATLAB source code is available for download through the Rutgers University Libraries Repository at the following link: https://doi.org/10.7282/00000213

References

  1. Dong X (2018) Current strategies for brain drug delivery. Theranostics 8(6):1481–1493. https://doi.org/10.7150/thno.21254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377. https://doi.org/10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  3. Sartoretti T, Wyss M, Sartoretti E, Reischauer C, Hainc N, Graf N, Binkert C, Najafi A, Sartoretti-Schefer S (2019) Sex and age dependencies of aqueductal cerebrospinal fluid dynamics parameters in healthy subjects. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00199

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kant S, Stopa EG, Johanson CE, Baird A, Silverberg GD (2018) Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS 15(1):34. https://doi.org/10.1186/s12987-018-0120-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wichmann TO, Damkier HH, Pedersen M (2022) A brief overview of the cerebrospinal fluid system and its implications for brain and spinal cord diseases. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2021.737217

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mestre H, Mori Y, Nedergaard M (2020) The Brain’s glymphatic system: current controversies. Trends Neurosci 43(7):458–466. https://doi.org/10.1016/j.tins.2020.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M (2020) Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 11(1):4411. https://doi.org/10.1038/s41467-020-18115-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40(3 Pt 1):500–503. https://doi.org/10.1212/wnl.40.3_part_1.500

    Article  CAS  PubMed  Google Scholar 

  9. de Leon MJ, Li Y, Okamura N, Tsui WH, Saint-Louis LA, Glodzik L, Osorio RS, Fortea J, Butler T, Pirraglia E, Fossati S, Kim H-J, Carare RO, Nedergaard M, Benveniste H, Rusinek H (2017) Cerebrospinal fluid clearance in alzheimer disease measured with dynamic PET. J Nucl Med 58(9):1471–1476. https://doi.org/10.2967/jnumed.116.187211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto Y, Välitalo PA, van den Berg D-J, Hartman R, van den Brink W, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Bakshi S, Aranzana-Climent V, Marchand S, Dahyot-Fizelier C, Couet W, Danhof M, van Hasselt JGC, de Lange ECM (2017) A generic multi-compartmental CNS distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res 34(2):333–351. https://doi.org/10.1007/s11095-016-2065-3

    Article  CAS  PubMed  Google Scholar 

  11. Domer FR (1969) Effects of diuretics on cerebrospinal fluid formation and potassium movement. Exp Neurol 24(1):54–64. https://doi.org/10.1016/0014-4886(69)90005-3

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Rev 17(2):109–138. https://doi.org/10.1016/0165-0173(92)90011-A

    Article  CAS  PubMed  Google Scholar 

  13. Vogh BP, Godman DR, Maren TH (1987) Effect of AlCl3 and other acids on cerebrospinal fluid production: a correction. J Pharmacol Exp Ther 243(1):35–39

    CAS  PubMed  Google Scholar 

  14. Nishikawa T, Namiki A (1987) The effects of verapamil on cerebrospinal fluid pressure in surgical patients. J Anesth 1(2):132–136. https://doi.org/10.1007/s0054070010132

    Article  CAS  PubMed  Google Scholar 

  15. Bota DA, Desjardins A, Quinn JA, Affronti ML, Friedman HS (2007) Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther Clin Risk Manag 3(5):707–715

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fleming AB, Saltzman WM (2002) Pharmacokinetics of the Carmustine Implant. Clin Pharmacokinet 41(6):403–419. https://doi.org/10.2165/00003088-200241060-00002

    Article  CAS  PubMed  Google Scholar 

  17. Gordon Betts KAY J, Wise JA, Johnson E, Poe B, Kruse DH, Korol O, Johnson JE, Womble M, DeSaix P (2013) Cerebrospinal fluid circulation. OpenStax, Houston

    Google Scholar 

  18. Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange ECM (2012) Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J 14(3):543–553. https://doi.org/10.1208/s12248-012-9366-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kielbasa W, Kalvass JC, Stratford R (2009) Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispos 37(1):137–142. https://doi.org/10.1124/dmd.108.023119

    Article  CAS  PubMed  Google Scholar 

  20. Cserr H (1965) Potassium exchange between cerebrospinal fluid, plasma, and brain. American Journal of Physiology-Legacy Content 209(6):1219–1226. https://doi.org/10.1152/ajplegacy.1965.209.6.1219

    Article  CAS  Google Scholar 

  21. Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M (1985) Saturable transport of cimetidine from cerebrospinal fluid to blood in rats. J Pharmacobiodyn 8(1):73–76. https://doi.org/10.1248/bpb1978.8.73

    Article  CAS  PubMed  Google Scholar 

  22. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750. https://doi.org/10.1007/s11095-007-9502-2

    Article  CAS  PubMed  Google Scholar 

  23. Agarwala SS, Kirkwood JM (2000) Temozolomide, a novel alkylating agent with activity in the central nervous system may improve the treatment of advanced metastatic melanoma. Oncologist 5(2):144–151. https://doi.org/10.1634/theoncologist.5-2-144

    Article  CAS  PubMed  Google Scholar 

  24. Vogh BP (1980) The relation of choroid plexus carbonic anhydrase activity to cerebrospinal fluid formation: study of three inhibitors in cat with extrapolation to man. J Pharmacol Exp Ther 213(2):321–331

    CAS  PubMed  Google Scholar 

  25. Kim MS, Seo KS, Seong HS, Cho SH, Lee HB, Hong KD, Kim SK, Khang G (2005) Synthesis and characterization of polyanhydride for local BCNU delivery carriers. Bio-Med Mater Eng 15(3):229–238

    Article  CAS  Google Scholar 

  26. Yoshino A, Ogino A, Yachi K, Ohta T, Fukushima T, Watanabe T, Katayama Y, Okamoto Y, Naruse N, Sano E, Tsumoto K (2010) Gene expression profiling predicts response to temozolomide in malignant gliomas. Int J Oncol 36(6):1367–1377. https://doi.org/10.3892/ijo_00000621

    Article  CAS  PubMed  Google Scholar 

  27. Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15(22):7092–7098. https://doi.org/10.1158/1078-0432.CCR-09-1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heimberger AB, Archer GE, McLendon RE, Hulette C, Friedman AH, Friedman HS, Bigner DD, Sampson JH (2000) Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Clin Cancer Res 6(10):4148

    CAS  PubMed  Google Scholar 

  29. Zhou Q, Guo P, Kruh GD, Vicini P, Wang X, Gallo JM (2007) Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clin Cancer Res 13(14):4271. https://doi.org/10.1158/1078-0432.CCR-07-0658

    Article  CAS  PubMed  Google Scholar 

  30. Melby JM, Miner LC, Reed DJ (1982) Effect of acetazolamide and furosemide on the production and composition of cerebrospinal fluid from the cat choroid plexus. Can J Physiol Pharmacol 60(3):405–409. https://doi.org/10.1139/y82-059

    Article  CAS  PubMed  Google Scholar 

  31. III AAB (2010) High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity. Dissertation

  32. Mirams GR, Cui Y, Sher A, Fink M, Cooper J, Heath BM, McMahon NC, Gavaghan DJ, Noble D (2011) Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovasc Res 91(1):53–61. https://doi.org/10.1093/cvr/cvr044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Dessi, C.M. Wood, J.C. Sy. (2018) Modulating drug clearance from the brain via cerebrospinal fluid pathways. Poster presented at the Annual Rutgers Brain Health Institute Symposium, New Providence, NJ

  34. Attier-Zmudka J, Sérot J-M, Valluy J, Saffarini M, Macaret A-S, Diouf M, Dao S, Douadi Y, Malinowski KP, Balédent O (2019) Decreased cerebrospinal fluid flow is associated with cognitive deficit in elderly patients. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00087

    Article  PubMed  PubMed Central  Google Scholar 

  35. Göpferich A, Langer R (1993) The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J Polym Sci Part A 31(10):2445–2458. https://doi.org/10.1002/pola.1993.080311004

    Article  Google Scholar 

  36. Fung L, Shin M, Tyler B, Brem H, Saltzman W (1996) Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 13:671–682. https://doi.org/10.1023/A:1016083113123

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Wang C, Wang L, Chen Y (2019) A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv 26(1):551–565. https://doi.org/10.1080/10717544.2019.1616235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stine CA, Munson JM (2019) Convection-enhanced delivery: connection to and impact of interstitial fluid flow. Front Oncol 9:966–966. https://doi.org/10.3389/fonc.2019.00966

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R (1983) Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4(2):131–133. https://doi.org/10.1016/0142-9612(83)90054-6

    Article  CAS  PubMed  Google Scholar 

  40. Tamada J, Langer R (1992) The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 3(4):315–353. https://doi.org/10.1163/156856292X00402

    Article  CAS  PubMed  Google Scholar 

  41. Masi BC, Tyler BM, Bow H, Wicks RT, Xue Y, Brem H, Langer R, Cima MJ (2012) Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials 33(23):5768–5775. https://doi.org/10.1016/j.biomaterials.2012.04.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, Lewis LD (2019) Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366(6465):628–631. https://doi.org/10.1126/science.aax5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valenza M, Facchinetti R, Steardo L, Scuderi C (2020) Altered waste disposal system in aging and alzheimer’s disease: focus on astrocytic aquaporin-4. Front Pharmacol 10:1656–1656. https://doi.org/10.3389/fphar.2019.01656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johanson CE, Donahue JE, Spangenberger A, Stopa EG, Duncan JA, Sharma HS (2006) Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir Suppl 96:451–456. https://doi.org/10.1007/3-211-30714-1_92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health: National Institute of Biomedical Imaging and Bioengineering (R00 EB016690) and National Institute of General Medical Sciences (T32 GM008339).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JCS, CMW. Data curation: CMW. Formal Analysis: CMW, VEF. Funding acquisition: JCS. Investigation: JCS, VEF, CMW. Methodology: CW, JCS. Project administration: JCS, CMW. Resources: JCS, CMW. Software: CMW, VEF. Supervision: JCS. Validation: JCS, CMW. Visualization: CMW, VEF. Writing—original draft: CMW. Writing—review & editing: JCS, CMW, VEF.

Corresponding author

Correspondence to Jay C. Sy.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, C.M., Farag, V.E. & Sy, J.C. Modeling of the effect of cerebrospinal fluid flow modulation on locally delivered drugs in the brain. J Pharmacokinet Pharmacodyn 49, 657–671 (2022). https://doi.org/10.1007/s10928-022-09827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-022-09827-7

Keywords

Navigation