Skip to main content
Log in

Zein Protein Obtained from Maize as a Novel Biodegradable Membrane Material for Oxygen/Nitrogen Separation: Membrane Fabrication and Characterization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, biodegradable zein protein obtained from maize was used as a novel material to prepare a membrane for oxygen/nitrogen separation. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile test, X-ray diffraction (XRD) spectroscopy, differential scanning calorimetry (DSC), biodegradability test, and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were conducted for characterizing the zein membrane, and membrane properties was compared with that of the polymeric membranes reported in the literature. The developed zein membrane showed a significantly high thermal stability. The mechanical properties of the zein membrane were higher or comparable to those of the previously reported dense membranes. In addition, biodegradation in compost was significantly higher than the other membranes reported in the literature. The developed zein membrane provided a significantly high oxygen/nitrogen selectivity at 2 bar, which was superior to most of the previously reported data on the neat biodegradable polymers with dense structure. The permeability of oxygen and nitrogen at 2 bar was 0.67 and 0.12 barrer, respectively, which brought about the selectivity of 5.45 for oxygen/nitrogen separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nagy E (2018) Basic equations of mass transport through a membrane layer. Elsevier

    Google Scholar 

  2. Xiang L, Liu D, Jin H et al (2020) Locking of phase transition in MOF ZIF-7: improved selectivity in mixed-matrix membranes for O 2/N 2 separation. Mater Horiz 7(1):223–228

    Article  CAS  Google Scholar 

  3. Raveshiyan S, Hosseini SS, Karimi-Sabet J (2020) Intensification of O2/N2 separation by novel magnetically aligned carbonyl iron powders/polysulfone magnetic mixed matrix membranes. Chem Eng Process-Process Intensif 150:107866

    Article  CAS  Google Scholar 

  4. Nikpour N, Khoshnevisan B (2020) Enhanced selectivity of O2/N2 gases in co-casted mixed matrix membranes filled with BaFe12O19 nanoparticles. Sep Purif Technol 242:116815

    Article  CAS  Google Scholar 

  5. Ismail A, Rahim R, Rahman W (2008) Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Sep Purif Technol 63(1):200–206

    Article  CAS  Google Scholar 

  6. Aitken C, Koros W, Paul DR (1992) Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules 25(13):3424–3434

    Article  CAS  Google Scholar 

  7. Weng TH, Tseng HH, Wey MY (2010) Effects of crosslinking modification on the O2/N2 separation characteristics of poly (phenyl sulfone)/poly (bisphenol A-co-4-nitrophthalic anhydride-co-1, 3-phenylenediamine) blend membranes. J Appl Polym Sci 116(3):1254–1263

    CAS  Google Scholar 

  8. Sridhar S, Smitha B, Mayor S, Prathab B, Aminabhavi T (2007) Gas permeation properties of polyamide membrane prepared by interfacial polymerization. J Mater Sci 42(22):9392–9401

    Article  CAS  Google Scholar 

  9. Bastani D, Esmaeili N, Asadollahi M (2013) Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J Ind Eng Chem 19(2):375–393

    Article  CAS  Google Scholar 

  10. Ghaffarian V, Mousavi SM, Bahreini M, Chamani H (2016) Poly (butylene succinate)/polyethersulfone/poly (ethylene glycol) membrane: influence of additive molecular weight and concentration on morphology, properties, and performance of the membrane. Desalin Water Treat 57(36):16800–16809

    CAS  Google Scholar 

  11. Ghaffarian V, Mousavi SM, Bahreini M, Afifi M (2013) Preparation and characterization of biodegradable blend membranes of PBS/CA. J Polym Environ 21(4):1150–1157

    Article  CAS  Google Scholar 

  12. Najafi M, Sadeghi M, Bolverdi A, Pourafshari Chenar M, Pakizeh M (2018) Gas permeation properties of cellulose acetate/silica nanocomposite membrane. Adv Polym Technol 37(6):2043–2052

    Article  CAS  Google Scholar 

  13. Jamian W, Hasbullah H, Mohamed F, Salleh WW, Ibrahim N, Ali RR (2015) Biodegradable gas separation membrane preparation by manipulation of casting parameters. Chem Eng Trans 43:1105–1110

    Google Scholar 

  14. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13(3):171–192

    Article  CAS  Google Scholar 

  15. Sutanto F, Meiser M, and Kokini JL. 2017 Glutaraldehyde Crosslinked Zein Solutions Make Better Biodegradable Films, in The Summer Undergraduate Research Fellowship (SURF) Symposium. p. 145.

  16. Soliman EA, Mohy Eldin MS, Furuta M (2009) Biodegradable zein-based films: influence of γ-irradiation on structural and functional properties. J Agric Food Chem 57(6):2529–2535

    Article  PubMed  CAS  Google Scholar 

  17. Beck M, Tomka I, Waysek E (1996) Physico-chemical characterization of zein as a film coating polymer: a direct comparison with ethyl cellulose. Int J Pharm 141(1–2):137–150

    Article  CAS  Google Scholar 

  18. Zhang Y, Cui L, Che X et al (2015) Zein-based films and their usage for controlled delivery: origin, classes and current landscape. J Control Release 206:206–219

    Article  PubMed  CAS  Google Scholar 

  19. Shi K, Kokini JL, Huang Q (2009) Engineering zein films with controlled surface morphology and hydrophilicity. J Agric Food Chem 57(6):2186–2192

    Article  PubMed  CAS  Google Scholar 

  20. Campbell AA, Zibell SE (1992) Zein/shellac encapsulation of high intensity sweeteners in chewing gum. U.S. Patent 5,164,210

  21. Dong J, Sun Q, Wang JY (2004) Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials 25(19):4691–4697

    Article  PubMed  CAS  Google Scholar 

  22. Avalle N (2001) Cosmetic powders coated with natural ingredients. European Patent EP 98201234A

  23. Schmidt G, Hamaker BR, Wilker JJ (2018) High strength adhesives from catechol cross-linking of zein protein and plant phenolics. Adv Sustain Syst 2(3):1700159

    Article  Google Scholar 

  24. Corradini E, Curti PS, Meniqueti AB, Martins AF, Rubira AF, Muniz EC (2014) Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int J Mol Sci 15(12):22438–22470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Luo Y, Wang Q (2014) Zein-based micro-and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci 131(16):40696

    Article  Google Scholar 

  26. Ma Y, Li X, Jia P, Ma Y, Liu N, Zhang H (2012) Preparation of zein-based membranes and their pervaporation for ethanol aqueous solution. Desalination 299:70–78

    Article  CAS  Google Scholar 

  27. O’sullivan J, Murray B, Flynn C, Norton I (2016) The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll 53:141–154

    Article  CAS  Google Scholar 

  28. Han Y-L, Xu Q, Lu Z, Wang J-Y (2013) Cell adhesion on zein films under shear stress field. Coll Surf, B 111:479–485

    Article  CAS  Google Scholar 

  29. Sun QS, Dong J, Lin ZX, Yang B, Wang JY (2005) Comparison of cytocompatibility of zein film with other biomaterials and its degradability in vitro. Biopolymers 78(5):268–274

    Article  PubMed  CAS  Google Scholar 

  30. Liu J, Shen L, Lin H, Huang Z, Hong H, Chen C (2022) Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J Colloid Interface Sci 618:483–495

    Article  PubMed  CAS  Google Scholar 

  31. Han L, Chen C, Shen L et al (2022) Novel membranes with extremely high permeability fabricated by 3D printing and nickel coating for oil/water separation. J Mater Chem A 10(22):12055–12061

    Article  CAS  Google Scholar 

  32. Liu Y, Shen L, Huang Z et al (2022) A novel in-situ micro-aeration functional membrane with excellent decoloration efficiency and antifouling performance. J Membr Sci 641:119925

    Article  CAS  Google Scholar 

  33. Liu B, Zhao X, Wang X, Wang F (2003) Thermal degradation kinetics of poly (propylene carbonate) obtained from the copolymerization of carbon dioxide and propylene oxide. J Appl Polym Sci 90(4):947–953

    Article  CAS  Google Scholar 

  34. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81(2):253–262

    Article  CAS  Google Scholar 

  35. Gaabour LH (2015) Thermal spectroscopy and kinetic studies of PEO/PVDF loaded by carbon nanotubes. J Mater 2015:1–8

    Google Scholar 

  36. Ebrahimi Kahrizsangi R, Abbasi M (2008) Evaluation of reliability of coats-redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China 18(1):217–221

    Article  CAS  Google Scholar 

  37. Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. Springer, New York, NY

  38. Suryanarayana C, Norton MG (1998) X-Ray diffraction: a practical approach. Springer, US

    Book  Google Scholar 

  39. Xiao Y, Chung TS (2011) Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO 2 capture. Energy Environ Sci 4(1):201–208

    Article  CAS  Google Scholar 

  40. Pramod K, Gangineni R (2015) Influence of solvent evaporation rate on crystallization of poly (vinylidene fluoride) thin films. Bull Mater Sci 38(4):1093–1098

    Article  CAS  Google Scholar 

  41. Yang CC, Lee YJ, Yang JM (2009) Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J Power Sources 188(1):30–37

    Article  CAS  Google Scholar 

  42. Mousavinezhad S, Mousavi S, Saljoughi E (2019) Preparation and characterization of styrene-butadiene-styrene membrane incorporated with graphene nanosheets for pervaporative removal of 1, 2, 4-trimethylbenzene from water. J Hazard Mater 387:120689

    Article  Google Scholar 

  43. Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376(1–2):188–195

    Article  CAS  Google Scholar 

  44. Raschke TM (2006) Water structure and interactions with protein surfaces. Curr Opin Struct Biol 16(2):152–159

    Article  PubMed  CAS  Google Scholar 

  45. Adánez J, García-Labiano F (1993) Factors affecting the thermogravimetric technique in the characterization of sorbents for AFBC. Thermochim Acta 217:99–113

    Article  Google Scholar 

  46. Xianzhe D, Nan L, Yuyuan W, Zhenping T (2022) Systematical study on the influencing factors of synchronous thermal analyses of samples taking the chalcanthite as an example. Front Chem. https://doi.org/10.3389/fchem.2022.863083

    Article  PubMed  PubMed Central  Google Scholar 

  47. Swolfs Y, Zhang Q, Baets J, Verpoest I (2014) The influence of process parameters on the properties of hot compacted self-reinforced polypropylene composites. Compos A Appl Sci Manuf 65:38–46

    Article  CAS  Google Scholar 

  48. Menczel JD, Prime RB (2009) Thermal analysis of polymers: fundamentals and applications. Wiley

    Book  Google Scholar 

  49. Nisar J, Khan MA, Iqbal M et al (2018) Comparative study of kinetics of the thermal decomposition of polypropylene using different methods. Adv Polym Technol 37(4):1168–1175

    Article  CAS  Google Scholar 

  50. Zhang F, Wang W, Cheng Y (2016) Influence of magnesium hydroxide on thermal decomposition of intumescent fire-retardant epoxy coatings. J Thermoplast Compos Mater 29(8):1151–1164

    Article  CAS  Google Scholar 

  51. Ng HM, Saidi NM, Omar FS, Ramesh K, Ramesh S, Bashir S (2018) Thermogravimetric Analysis of Polymers. Wiley, USA

    Book  Google Scholar 

  52. Homaeigohar SS, Buhr K, Ebert K (2010) Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J Membr Sci 365(1–2):68–77

    Article  CAS  Google Scholar 

  53. Zhou XY, Jia DM, Cui YF, Xie D (2009) Kinetics analysis of thermal degradation reaction of PVA and PVA/starch blends. J Reinf Plast Compos 28(22):2771–2780

    Article  CAS  Google Scholar 

  54. Gamlin C, Markovic M, Dutta N, Choudhury N, Matisons J (2000) Structural effects on the decomposition kinetics of EPDM elastomers by high-resolution TGA and modulated TGA. J Therm Anal Calorim 59(1–2):319–336

    Article  CAS  Google Scholar 

  55. Hashim Abed Almwli H, Mousavi SM, Kiani S (2021) Preparation of poly (butylene succinate)/polyvinylpyrrolidone blend membrane for pervaporation dehydration of acetone. Chem Eng Res Des 165:361–373

    Article  CAS  Google Scholar 

  56. Afsar F, Saljoughi E, Mousavi SM (2018) Poly (caprolactone)/poly (ethylene glycol) pervaporation blend membranes: synthesis, characterization, and performance. Polym Adv Technol 29(9):2467–2476

    Article  CAS  Google Scholar 

  57. Galiano F, Ghanim AH, Rashid KT et al (2019) Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation. Clean Technol Environ Policy 21(1):109–120

    Article  CAS  Google Scholar 

  58. Langari S, Saljoughi E, Mousavi SM (2018) Chitosan/polyvinyl alcohol/amino functionalized multiwalled carbon nanotube pervaporation membranes: synthesis, characterization, and performance. Polym Adv Technol 29(1):84–94

    Article  CAS  Google Scholar 

  59. Bai H, Zhou Y, Wang X, Zhang L (2012) The permeability and mechanical properties of cellulose acetate membranes blended with polyethylene glycol 600 for treatment of municipal sewage. Procedia Environ Sci 16:346–351

    Article  CAS  Google Scholar 

  60. Malekzadeh Dirin A, Saljoughi E, Mousavi SM, Kiani S (2020) Pervaporation separation of isopropylbenzene from water using four different polymeric membranes: membrane preparation, modification, characterization, and performance evaluation. J Taiwan Inst Chem Eng 114:67–80

    Article  CAS  Google Scholar 

  61. Vahedikia N, Garavand F, Tajeddin B et al (2019) Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: physical, mechanical, structural and antimicrobial attributes. Coll Surf, B 177:25–32

    Article  CAS  Google Scholar 

  62. Oliviero M, Di Maio E, Iannace S (2010) Effect of molecular structure on film blowing ability of thermoplastic zein. J Appl Polym Sci 115(1):277–287

    Article  CAS  Google Scholar 

  63. Nedi I, Di Maio E, Iannace S (2012) The role of protein–plasticizer–clay interactions on processing and properties of thermoplastic zein bionanocomposites. J Appl Polym Sci 125(S2):E314–E323

    Article  CAS  Google Scholar 

  64. Oliviero M, Verdolotti L, Di Maio E, Aurilia M, Iannace S (2011) Effect of supramolecular structures on thermoplastic Zein-Lignin bionanocomposites. J Agric Food Chem 59(18):10062–10070

    Article  PubMed  CAS  Google Scholar 

  65. Martínez-Izquierdo L, Malankowska M, Sánchez-Laínez J, Téllez C, Coronas J (2019) Poly (ether-block-amide) copolymer membrane for CO2/N2 separation: the influence of the casting solution concentration on its morphology, thermal properties and gas separation performance. Royal Soc Open Sci 6(9):190866

    Article  Google Scholar 

  66. Pereira LAS, Pagnossa JP, Miranda KWE, Medeiros ES, Piccoli RH, Jed O (2019) Antimicrobial zein coatings plasticized with garlic and thyme essential oils. Brazilian J Food Technol 22:e2018135

    Article  CAS  Google Scholar 

  67. Hill AJ, Tant MR (1999) The structure and properties of glassy polymers: An overview, in Structure and Properties of Glassy Polymers. ACS Publications, Washington

    Book  Google Scholar 

  68. Mohagheghian M, Sadeghi M, Pourafshari Chenar M, Naghsh M (2014) Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane. Korean J Chem Eng 31:2041–2050

    Article  CAS  Google Scholar 

  69. Kumar PA, Anilkumar S, Varughese K, Thomas S (2013) Permeation of nitrogen and oxygen gases through ethylene propylene diene terpolymer and high density polyethylene/ethylene propylene diene terpolymer blend membranes. Sep Sci Technol 48(3):455–465

    Article  CAS  Google Scholar 

  70. Sadeghi A, Mousavi SM, Saljoughi E, Kiani S (2020) Biodegradable membrane based on polycaprolactone/polybutylene succinate: characterization and performance evaluation in wastewater treatment. J Appl Polym Sci 138(18):50332

    Article  Google Scholar 

  71. Bahremand AH, Mousavi SM, Ahmadpour A, Taherian M (2017) Biodegradable blend membranes of poly (butylene succinate)/cellulose acetate/dextran: preparation, characterization and performance. Carbohyd Polym 173:497–507

    Article  CAS  Google Scholar 

  72. Bancila S, Ciobanu C-I, Murariu M, Drochioiu G (2016) Ultrasoundassisted zein extraction and determination in some patented maize flours. Rev Roum Chim 61(10):725–731

    Google Scholar 

  73. Torkamani AE, Syahariza ZA, Norziah MH, Wan AKM, Juliano P (2018) Encapsulation of polyphenolic antioxidants obtained from momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci 21:60–71

    Article  CAS  Google Scholar 

  74. Lin Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier

    Google Scholar 

  75. Rouf TB, Schmidt G, Kokini JL (2018) Zein-Laponite nanocomposites with improved mechanical, thermal and barrier properties. J Mater Sci 53(10):7387–7402

    Article  CAS  Google Scholar 

  76. Gallagher W. 2009 FTIR analysis of protein structure. Course manual Chem

  77. Gillgren T, Barker SA, Belton PS, Georget DMR, Stading M (2009) Plasticization of zein: a thermomechanical, FTIR, and dielectric study. Biomacromol 10(5):1135–1139

    Article  CAS  Google Scholar 

  78. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663

    Article  CAS  Google Scholar 

  79. Farnam M, Mukhtar H, Mohd SA (2014) A review on glassy polymeric membranes for gas separation. App Mechan Mater. https://doi.org/10.4028/www.scientific.net/AMM.625.701

    Article  Google Scholar 

  80. Shoghl SN, Raisi A, Aroujalian A (2015) A predictive mass transport model for gas separation using glassy polymer membranes. RSC Adv 5(48):38223–38234

    Article  CAS  Google Scholar 

  81. Esposito E, Mazzei I, Monteleone M et al (2019) Highly permeable Matrimid®/PIM-EA (H2)-TB blend membrane for gas separation. Polymers 11(1):46

    Article  Google Scholar 

  82. Komatsuka T, Kusakabe A, Nagai K (2008) Characterization and gas transport properties of poly (lactic acid) blend membranes. Desalination 234(1–3):212–220

    Article  CAS  Google Scholar 

  83. Şen D, Kalıpçılar H, Yılmaz L (2006) Gas separation performance of polycarbonate membranes modified with multifunctional low molecular-weight additives. Sep Sci Technol 41(9):1813–1828

    Article  Google Scholar 

  84. Ho W, Sirkar K (2012) Membrane handbook. Springer, NY

  85. Tavasoli E, Sadeghi M, Riazi H, Shamsabadi AA, Soroush M (2018) Gas separation polysulfone membranes modified by cadmium-based nanoparticles. Fibers Polym 19(10):2049–2055

    Article  CAS  Google Scholar 

  86. Shahzamani M, Ebrahimi NG, Sadeghi M, Mostafavi F (2016) Relationship between the microstructure and gas transport properties of polyurethane/polycaprolactone blends. Iranian J Chem Eng (IJChE) 13(3):78–88

    Google Scholar 

  87. Babaei S, Nematollahi MH, Abedini R (2020) Pure and mixed gas permeation study of silica incorporated polyurethane-urea membrane modified by MOCA chain extender. Canadian J Chem Eng 98(7):1543–1557

    Article  CAS  Google Scholar 

  88. Afarani HT, Sadeghi M, Moheb A (2018) The gas separation performance of polyurethane–zeolite mixed matrix membranes. Adv Polym Technol 37(2):339–348

    Article  CAS  Google Scholar 

  89. Messin T, Marais S, Follain N et al (2020) Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances. J Membr Sci 598:117777

    Article  CAS  Google Scholar 

  90. Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact 18(4):287–296

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Amirreza Malekzadeh Dirin : Investigation ,Writing - Original Draft Ehsan Saljoughi: Supervision, Project administration Mahmoud Mousavi: Supervision Shirin Kiani: Writing - Review & Editing

Corresponding author

Correspondence to Ehsan Saljoughi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekzadeh Dirin, A., Saljoughi, E., Kiani, S. et al. Zein Protein Obtained from Maize as a Novel Biodegradable Membrane Material for Oxygen/Nitrogen Separation: Membrane Fabrication and Characterization. J Polym Environ 30, 5069–5083 (2022). https://doi.org/10.1007/s10924-022-02570-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02570-7

Keywords

Navigation