Skip to main content
Log in

Recyclable Clay-Supported Heteropolyacid Catalysts for Complete Glycolysis and Aminolysis of Post-consumer PET Beverage Bottles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

A Correction to this article was published on 08 February 2022

This article has been updated

Abstract

In this investigation, the use of phosphotungstic acid (PWA) and phosphomolybdic acid (PMA) as well as Zn2+ containing kaolin and bentonite explored for chemical recycling of post-consumer poly(ethyleneterephthalate) (PET) wastes have been explored. The clay supported catalysts containing 5wt% of the metals and heteropolyacids (HPAs) synthesized using wet impregnation method. Nitrogen adsorption and desorption studies, SEM–EDX mapping, powder XRD, FTIR and XPS analysis have evaluated effect of metal ions and HPAs loading on the surface area, pore volume, elemental composition and crystalline nature. Total surface area of BET increased with a loading of 5 wt% of Zn2+, PWA and PMA on kaolin and bentonite, while the pore volume and pore diameter remain unchanged. SEM and EDAX mapping images showed that the heteropolyacids crystals are well dispersed on the surface and occupied interlayer spaces of the clay support. SEM–EDX showed that bentonite showed a better loading of PWA and PMA compared to kaolin. PET waste water bottles collected from the local market used for the chemical recycling process. The aminolysis reaction using Zn2+ and PWA loaded on bentonite showed complete depolymerisation of PET wastes to produce 87–98% of BHETA. The glycolysis reaction using the above catalysts showed complete depolymerisation at 180–210 °C and yielded 78–90% of BHET. When comparing the clay, bentonite performed well in terms of heteropolyacid loading and afforded a higher yield of BHET and BHETA because of higher loading of Zn and HPA, as supported by SEM–EDX and XPS. We also examined reusability of the catalysts for glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

Samples

Samples of catalysts and depolymerized products are available from the corresponding author.

Change history

References

  1. Thomas P, Rumjit NP, Lai CW, Johan MRB, Saravanakumar MP (2020) Polymer-recycling of bulk plastics. Encycl Renew Sustain Mater 2:432–454. https://doi.org/10.1016/b978-0-12-803581-8.10765-9

    Article  Google Scholar 

  2. Payne J, Jones MD (2021) The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. Chemsuschem 14:4041–4070. https://doi.org/10.1002/cssc.202100400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Wan K, Zhang Y, Wang Y (2021) Waste to wealth: chemical recycling and chemical upcycling of waste plastics for a great future. Chemsuschem 14:4123–4136. https://doi.org/10.1002/cssc.202100652

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Hui D, Singh R, Ahuja I, Feo L, Fraternali F (2016) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013

    Article  CAS  Google Scholar 

  5. Sinha V, Patel MR, Patel JV (2010) Pet waste management by chemical recycling: a review. J Polym Environ 18:8–25. https://doi.org/10.1007/s10924-008-0106-7

    Article  CAS  Google Scholar 

  6. Wang Q, Yao X, Geng Y, Zhou Q, Lu X, Zhang S (2015) Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET). Green Chem 17:2473–2479. https://doi.org/10.1039/c4gc02401j

    Article  CAS  Google Scholar 

  7. Lamberti FM, Román-Ramírez LA, Wood J (2020) Recycling of bioplastics: routes and benefits. J Polym Environ 28:2551–2571. https://doi.org/10.1007/s10924-020-01795-8

    Article  CAS  Google Scholar 

  8. Jeya G, Rajalakshmi S, Gayathri KV, Priya P, Sakthivel P, Sivamurugan V (2022) A bird’s eye view on sustainable management solutions for non-degradable plastic wastes. In: Vasanthy M, Sivasankar V, Sunitha TG (eds) Organic pollutants emerging contaminants and associated treatment technologies. Springer, Cham

    Google Scholar 

  9. Liguori F, Moreno-Marrodán C, Barbaro P (2021) Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein J Org Chem 17:589–621. https://doi.org/10.3762/bjoc.17.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bedell M, Brown M, Kiziltas A, Mielewski D, Mukerjee S, Tabor R (2018) A case for closed-loop recycling of post-consumer PET for automotive foams. Waste Manage 71:97–108. https://doi.org/10.1016/j.wasman.2017.10.021

    Article  CAS  Google Scholar 

  11. Maurya A, Bhattacharya A, Khare SK (2020) Enzymatic remediation of polyethylene terephthalate (PET)–based polymers for effective management of plastic wastes: an overview. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2020.602325

    Article  PubMed  PubMed Central  Google Scholar 

  12. Al-Sabagh AM, Yehia FZ, Eshaq G, Elmetwally AE (2015) Ionic liquid-coordinated ferrous acetate complex immobilized on bentonite as a novel separable catalyst for PET glycolysis. Ind Eng Chem Res 54:12474–12481. https://doi.org/10.1021/acs.iecr.5b03857

    Article  CAS  Google Scholar 

  13. Singh N, Hui D, Singh R, Ahuja I, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013

    Article  CAS  Google Scholar 

  14. Liu B, Fu W, Lu X, Zhou Q, Zhang S (2019) Lewis acid-base synergistic catalysis for polyethylene terephthalate degradation by 1,3-dimethylurea/Zn(OAc)2 deep eutectic solvent. ACS Sustain Chem Eng 7:3292–3300. https://doi.org/10.1021/acssuschemeng.8b05324

    Article  CAS  Google Scholar 

  15. Zimmermann W (2020) Biocatalytic recycling of polyethylene terephthalate plastic. Philos Trans A Math Phys Eng Sci 378(2176):20190273. https://doi.org/10.1098/rsta.2019.0273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan ZF, Wang L, Xia W, Liu ZZ, Gu LT, Wu J (2021) Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase. Appl Microbiol Biotechnol 105(11):4551–4560. https://doi.org/10.1007/s00253-020-11067-z

    Article  CAS  PubMed  Google Scholar 

  17. Gupta P, Bhandari S (2019) Chemical depolymerization of PET bottles via ammonolysis and aminolysis. In: Thomas S, Rane A, Kanny K, Thomas MG (eds) Plastics design library. William Andrew Publishing, Norwich, pp 109–134

    Google Scholar 

  18. Langer E, Bortel K, Waskiewicz S, Lenartowicz-Klik M (2020) Methods of PET recycling. Plast Derived Post-Consum PET. https://doi.org/10.1016/b978-0-323-46200-6.00005-2

    Article  Google Scholar 

  19. Nagasundaram N, Kokila M, Sivaguru P, Santhosh R, Lalitha A (2020) SO3H@carbon powder derived from waste orange peel: an efficient, nano-sized greener catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Adv Powder Technol 31:1516–1528. https://doi.org/10.1016/j.apt.2020.01.012

    Article  CAS  Google Scholar 

  20. Lalhmangaihzuala S, Laldinpuii Z, Lalmuanpuia C, Vanlaldinpuia K (2020) Glycolysis of poly(ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst. Polymers 13:37. https://doi.org/10.3390/polym13010037

    Article  CAS  PubMed Central  Google Scholar 

  21. Laldinpuii Z, Lalhmangaihzuala S, Pachuau Z, Vanlaldinpuia K (2021) Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst. Waste Manage 126:1–10. https://doi.org/10.1016/j.wasman.2021.02.056

    Article  CAS  Google Scholar 

  22. Guo Z, Adolfsson E, Tam PL (2021) Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method. Waste Manage 126:559–566. https://doi.org/10.1016/j.wasman.2021.03.049

    Article  CAS  Google Scholar 

  23. George N, Kurian T (2016) Sodium carbonate catalyzed aminolytic degradation of PET. Prog Rubber Plast Recycl Technol 32:153–168. https://doi.org/10.1177/147776061603200304

    Article  Google Scholar 

  24. Hoang CN, Dang YH (2013) Aminolysis of poly(ethylene terephthalate) waste with ethylenediamine and characterization of α, ω-diamine products. Polym Degrad Stab 98:697–708. https://doi.org/10.1016/j.polymdegradstab.2012.12.026

    Article  CAS  Google Scholar 

  25. More AP, Kokate SR, Rane PC, Mhaske ST (2016) Studies of different techniques of aminolysis of poly(ethylene terephthalate) with ethylenediamine. Polym Bull 74:3269–3282. https://doi.org/10.1007/s00289-016-1888-8

    Article  CAS  Google Scholar 

  26. Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A (2015) Chemical recycling of PET wastes with different catalysts. Int J Polym Sci 2015:1–11. https://doi.org/10.1155/2015/124524

    Article  CAS  Google Scholar 

  27. Attique S, Batool M, Jalees MI, Shehzad K, Farooq U, Khan Z, Ashraf FAT, Shah AT (2018) Highly efficient catalytic degradation of low-density polyethylene Using a novel tungstophosphoric acid/kaolin clay composite catalyst. Turk J Chem. https://doi.org/10.3906/kim-1612-21

    Article  Google Scholar 

  28. Nagendrappa G (2011) Organic synthesis using clay and clay-supported catalysts. Appl Clay Sci 53:106–138. https://doi.org/10.1016/j.clay.2010.09.016

    Article  CAS  Google Scholar 

  29. Nagendrappa G, Chowreddy RR (2021) Organic reactions using clay and clay-supported catalysts: a survey of recent literature. Catal Surv Asia 25:231–278. https://doi.org/10.1007/s10563-021-09333-9

    Article  CAS  Google Scholar 

  30. Hajizadeh Z, Radinekiyan F, Eivazzadeh-keihan R, Maleki A (2020) Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations. Sci Rep 10:11671. https://doi.org/10.1038/s41598-020-68426-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonacci S, Nardi M, Costanzo P, De Nino A, Di Gioia ML, Oliverio M, Procopio A (2019) Montmorillonite K10-catalyzed solvent-free conversion of furfural into cyclopentenones. Catalysts. https://doi.org/10.3390/catal9030301

    Article  Google Scholar 

  32. de Nazaré de Oliveira A, de Lima MAB, de Oliveira Pires LH, da Silva MR, da Luz PTS, Angélica RS, da Rocha Filho GN, da Costa CEF, Luque R, do Nascimento LAS (2019) Bentonites modified with phosphomolybdic heteropolyacid (HPMo) for biowaste to biofuel production. Materials (Basel) 12:1431. https://doi.org/10.3390/ma12091431

    Article  CAS  Google Scholar 

  33. Chen L, Nohair B, Zhao D, Kaliaguine S (2018) Highly efficient glycerol acetalization over supported heteropoly acid catalysts. ChemCatChem 10:1918–1925. https://doi.org/10.1002/cctc.201701656

    Article  CAS  Google Scholar 

  34. Kundu SK, Mondal J, Bhaumik A (2013) Tungstic acid functionalized mesoporous SBA-15: a novel heterogeneous catalyst for facile one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. Dalton Trans 42:10515. https://doi.org/10.1039/c3dt50947h

    Article  CAS  PubMed  Google Scholar 

  35. Guan W, Chen X, Hu H, Tsang CW, Zhang J, Lin CSK, Liang C (2020) Catalytic hydrogenolysis of lignin β-O-4 aryl ether compound and lignin to aromatics over Rh/Nb2O5 under low H2 pressure. Fuel Process Technol 203:106392. https://doi.org/10.1016/j.fuproc.2020.106392

    Article  CAS  Google Scholar 

  36. Siregar SH, Wijaya K, Kunarti ES, Syoufian A, Suyanta S (2017) Preparation and characterization of montmorillonite-cetyl trimethylammonium bromide. Asian J Chem 30:25–28. https://doi.org/10.14233/ajchem.2018.20782

    Article  CAS  Google Scholar 

  37. Chen R, Xin J, Yan D, Dong H, Lu X, Zhang S (2019) Highly efficient oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with heteropoly acids and ionic liquids. Chemsuschem 12:2715–2724. https://doi.org/10.1002/cssc.201900651

    Article  CAS  PubMed  Google Scholar 

  38. Shuangjun C, Weihe S, Haidong C, Hao Z, Zhenwei Z, Chaonan F (2020) Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ionic liquids. J Therm Anal Calorim 143:3489–3497. https://doi.org/10.1007/s10973-020-10331-8

    Article  CAS  Google Scholar 

  39. Jeya G, Anbarasu M, Dhanalakshmi R, Vinitha V, Sivamurugan V (2020) Depolymerization of poly(ethylene terephthalate) wastes through glycolysis using Lewis acidic bentonite catalysts. Asian J Chem 32:187–191. https://doi.org/10.14233/ajchem.2020.22387

    Article  CAS  Google Scholar 

  40. Jeya G, Ilbeygi H, Radhakrishnan D, Sivamurugan V (2017) Glycolysis of post-consumer poly(ethylene terephthalate) wastes using Al, Fe and Zn exchanged kaolin catalysts with Lewis acidity. Adv Porous Mater 5:128–136. https://doi.org/10.1166/apm.2017.1141

    Article  Google Scholar 

  41. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 140(2):114–131. https://doi.org/10.1016/j.cis.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  42. Kuila U, Prasad M (2013) Specific surface area and pore-size distribution in clays and shales. Geophys Prospect 61:341–362. https://doi.org/10.1111/1365-2478.12028

    Article  Google Scholar 

  43. Alsalme A, Alsharif AA, Al-Enizi H, Khan M, Alshammari SG, Alotaibi MA, Khan RA, Siddiqui MRH (2018) Probing the catalytic efficiency of supported heteropoly acids for esterification: effect of weak catalyst support interactions. J Chem 2018:7037461. https://doi.org/10.1155/2018/7037461

    Article  CAS  Google Scholar 

  44. Wang X, Cheng H, Chai P, Bian J, Wang X, Liu Y, Yin X, Pan S, Pan Z (2020) Pore characterization of different clay minerals and its impact on methane adsorption capacity. Energy Fuels 34:12204–12214. https://doi.org/10.1021/acs.energyfuels.0c01922

    Article  CAS  Google Scholar 

  45. Naswir M, Arita S, Marsi S (2013) Characterization of bentonite by XRD and SEM-EDS and use to increase PH and color removal, Fe and organic substances in peat water. J Clean Energy Technol. https://doi.org/10.7763/jocet.2013.v1.71

    Article  Google Scholar 

  46. Bouraie ME, Masoud AA (2017) Adsorption of phosphate ions from aqueous solution by modified bentonite with magnesium hydroxide Mg(OH)2. Appl Clay Sci 140:157–164. https://doi.org/10.1016/j.clay.2017.01.021

    Article  CAS  Google Scholar 

  47. Shukla SR, Palekar V, Pingale N (2008) Zeolite catalyzed glycolysis of poly(ethylene terephthalate) bottle waste. J Appl Polym Sci 110:501–506. https://doi.org/10.1002/app.28656

    Article  CAS  Google Scholar 

  48. Aher DS, Khillare KR, Chavan LD, Shankarwar SG (2021) Tungsten-substituted molybdophosphoric acid impregnated with kaolin: effective catalysts for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones via biginelli reaction. RSC Adv 11:2783–2792. https://doi.org/10.1039/d0ra09811f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morgan AB, Harris JD (2004) Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication. Polymer 45:8695–8703. https://doi.org/10.1016/j.polymer.2004.10.067

    Article  CAS  Google Scholar 

  50. Russell JD, Fraser AR (1994) Clay mineralogy: spectroscopic and chemical determinative methods. Infrared Methods. https://doi.org/10.1007/978-94-011-0727-3_2

    Article  Google Scholar 

  51. Aher DS, Khillare KR, Shankarwar SG (2021) Incorporation of Keggin-based H3PW7Mo5O40 into bentonite: synthesis, characterization and catalytic applications. RSC Adv 11:11244–11254. https://doi.org/10.1039/d1ra01179k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Munir M, Ahmad M, Saeed M, Waseem A, Rehan M, Nizami AS, Zafar M, Arshad M, Sultana S (2019) Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renew Sustain Energy Rev 109:321–332. https://doi.org/10.1016/j.rser.2019.04.029

    Article  CAS  Google Scholar 

  53. Winiarski J, Tylus W, Winiarska K, Szczygieł I, Szczygieł B (2018) XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J Spectrosc. https://doi.org/10.1155/2018/2079278

    Article  Google Scholar 

  54. Sarkar K, Meka SRK, Bagchi A, Krishna NS, Ramachandra SG, Madras G, Chatterjee K (2014) Polyester derived from recycled poly(ethylene terephthalate) waste for regenerative medicine. RSC Adv 4:58805–58815. https://doi.org/10.1039/c4ra09560j

    Article  CAS  Google Scholar 

  55. Imran M, Kim DH, Al-Masry WA, Mahmood A, Hassan A, Haider S, Ramay SM (2013) Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym Degrad Stab 98:904–915. https://doi.org/10.1016/j.polymdegradstab.2013.01.007

    Article  CAS  Google Scholar 

  56. Ghosal K, Sarkar K (2019) Poly(ester amide) derived from municipal polyethylene terephthalate waste guided stem cell for osteogenesis. New J Chem 43:14166–14178. https://doi.org/10.1039/C9NJ02940K

    Article  CAS  Google Scholar 

  57. Yunita I, Putisompon S, Chumkaeo P, Poonsawat T, Somsook E (2019) Effective catalysts derived from waste ostrich eggshells for glycolysis of post - consumer PET bottles. Chem Pap 73:1547–1560. https://doi.org/10.1007/s11696-019-00710-3

    Article  CAS  Google Scholar 

  58. Achilias DS, Tsintzou GP, Nikolaidis AK, Bikiaris DN, Karayannidis GP (2011) Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Polym Int 60:500–506. https://doi.org/10.1002/pi.2976

    Article  CAS  Google Scholar 

  59. Eshaq G, Elmetwally AE (2016) (Mg-Zn)-Al layered double hydroxide as a regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate. J Mol Liq 214:1–6. https://doi.org/10.1016/j.molliq.2015.11.049

    Article  CAS  Google Scholar 

  60. Fang P, Liu B, Xu J, Zhou Q, Zhang S, Ma J, Lu X (2018) High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites. Polym Degrad Stab 156:22–31. https://doi.org/10.1016/j.polymdegradstab.2018.07.004

    Article  CAS  Google Scholar 

  61. Chen F, Wang G, Li W, Yang F (2013) Glycolysis of poly(ethylene terephthalate) over Mg-Al mixed oxides catalysts derived from hydrotalcites. Ind Eng Chem Res 52:565–571. https://doi.org/10.1021/ie302091j

    Article  CAS  Google Scholar 

  62. Al-Sabagh AM, Yehia FZ, Eissa AMF, Moustafa ME, Eshaq G, Rabie AM, Elmetwally AE (2014) Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polym Degrad Stab 110:364–377. https://doi.org/10.1016/j.polymdegradstab.2014.10.005

    Article  CAS  Google Scholar 

  63. Geng Y, Dong T, Fang P, Zhou Q, Lu X, Zhang S (2015) Fast and effective glycolysis of poly(ethylene terephthalate) catalyzed by polyoxometalate. Polym Degrad Stab 117:30–36. https://doi.org/10.1016/j.polymdegradstab.2015.03.019

    Article  CAS  Google Scholar 

  64. Hanif MA, Nisar S, Rashid U (2017) Supported solid and heteropoly acid catalysts for production of biodiesel. Catal Rev 59:165–188. https://doi.org/10.1080/01614940.2017.1321452

    Article  CAS  Google Scholar 

  65. Izumi Y (1997) Hydration/hydrolysis by solid acids. Catal Today 33:371–409. https://doi.org/10.1016/S0920-5861(96)00165-4

    Article  CAS  Google Scholar 

  66. Izumi Y, Urabe K, Onaka M (1992) Zeolite, clay and heteropoly acids in organic reactions. Wiley VCH, Hoboken

    Google Scholar 

Download references

Acknowledgements

Dr. V. Sivamurugan and Ms. G. Jeya grateful to University Grants Commission (UGC), New Delhi for the financial assistance received in the form of Minor Research Project [MRP-6393/16 (SERO/UGC)]. We thank Ms. Kazuyo Omura at the Institute for Material Research of Tohoku University for XPS measurements. This work was sponsored by JSPS Grant-in-Aid for Scientific Research on Innovative Areas “Discrete Geometric Analysis for Materials Design” (Grant No. JP20H04628), JSPS KAKENHI (Grant No. JP21H02037), and a cooperative program (Proposal No. 202011-CRKEQ-0001) of CRDAM-IMR, Tohoku University.

Author information

Authors and Affiliations

Authors

Contributions

GJ—Executed laboratory experiments and writing the manuscript, EG, AAHT, YI—Characterisation of catalysts, RD—Executed laboratory experiments, VS—Conceptualization, research planning, and manuscript drafting and submission.

Corresponding author

Correspondence to Sivamurugan Vajiravelu.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a mistake in the first and family name of the fourth author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, J., Elumalai, G., Tajuddin, A.A.H. et al. Recyclable Clay-Supported Heteropolyacid Catalysts for Complete Glycolysis and Aminolysis of Post-consumer PET Beverage Bottles. J Polym Environ 30, 2614–2630 (2022). https://doi.org/10.1007/s10924-022-02386-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02386-5

Keywords

Navigation