Skip to main content
Log in

Improving Time Resolution of Ultrasonic Signals with Frequency-Domain Sparse Blind Deconvolution (FSBD) Method

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The improvement of time resolution is commonly concerned in ultrasonic testing, while the reference signal significantly influences the decoupling and interpretation of multiple overlapped signals. In this paper, the frequency-domain sparse blind deconvolution (FSBD) method is proposed to enhance the time resolution of ultrasonic signals without using any reference signal. The matching pursuit (MP) algorithm is introduced to remove noise for signal reconstruction. On this basis, homomorphic transformation is applied to the de-noised signal, and the l1 and l2 norm constraints based on sparsity are combined to construct a frequency-domain objective function for improving time resolution. The multilayer specimens and small defect were quantitatively detected using the FSBD method by experiments. The results demonstrate that the to-be-measured object with a size of half-wavelength can be identified by decoupling the multiple overlapped signals. Finally, the FSBD method is compared with minimum entropy deconvolution and homomorphic deconvolution. The relationship between the number of scattered/reflected echoes K and the regularization parameter μ is discussed to solve reasonably the regularization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lu, J., Demirli, R., Saniie, J.: Ultrasonic reflectivity function estimation using cepstrum sparse deconvolution. In: IEEE International Ultrasonics Symposium Proceedings, Tours (2016)

  2. Wei, L., Huang, Z., Que, P.: Sparse deconvolution method for improving the time-resolution of ultrasonic NDE signals. NDT&E Int. 42(5), 430–434 (2009)

    Article  Google Scholar 

  3. Chen, J., Bai, X., Yang, K., Ju, B.: An ultrasonic methodology for determining the mechanical and geometrical properties of a thin layer using a deconvolution technique. Ultrasonics 53(7), 1377–1383 (2013)

    Article  Google Scholar 

  4. Praher, B., Steinbichler, G.: Ultrasound-based measurement of liquid-layer thickness: a novel time-domain approach. Mech. Syst. Signal Process. 82, 166–177 (2017)

    Article  Google Scholar 

  5. Dou, P., Wu, T., Peng, Z.: A time-domain ultrasonic approach for oil film thickness measurement with improved resolution and range. Meas. Sci. Technol. 31(7), 75006 (2020)

    Article  Google Scholar 

  6. Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N.: Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals. Ultrasonics 41(9), 755–763 (2004)

    Article  Google Scholar 

  7. Hayward, G., Lewis, J.E.: Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data. Ultrasonics 27(3), 155–164 (1989)

    Article  Google Scholar 

  8. Sin, S.K., Chen, C.H.: A comparison of deconvolution techniques for the ultrasonic nondestructive evaluation of materials. IEEE Trans. Image Process. 1(1), 3–10 (1992)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Wu, E., Wu, H., Zhou, H., Yang, K.: Enhancing ultrasonic time-of-flight diffraction measurement through an adaptive deconvolution method. Ultrasonics 96, 175–180 (2019)

    Article  Google Scholar 

  10. Ma, Z.Y., Zhang, W., Luo, Z.B., Lin, L., Krishnaswamy, S.: Thickness determination of dual-layer coatings based on ultrasonic spectral filtering. Insight 60(4), 200–205 (2018)

    Article  Google Scholar 

  11. Dong, J., Locquet, A., Citrin, D.S.: Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation. Opt. Lett. 42(9), 1828 (2017)

    Article  Google Scholar 

  12. Guo, J., Xin, Y.: Reconstructing outside pass-band data to improve time resolution in ultrasonic detection. NDT&E Int. 50, 50–57 (2012)

    Article  Google Scholar 

  13. Shakibi, B., Honarvar, F., Moles, M.D.C., Caldwell, J., Sinclair, A.N.: Resolution enhancement of ultrasonic defect signals for crack sizing. NDT&E Int. 52, 37–50 (2012)

    Article  Google Scholar 

  14. Chang, Y., Zi, Y., Zhao, J., Yang, Z., He, W., Sun, H.: An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection. Meas. Sci. Technol. 28(3), 35002 (2017)

    Article  Google Scholar 

  15. Soussen, C., Idier, J., Carcreff, E., Simon, L., Potel, C.: Ultrasonic non destructive testing based on sparse deconvolution. J. Phys.: Conf. Ser. 353, 12010–12018 (2012)

    Google Scholar 

  16. Alessandrini, M., Maggio, S., Poree, J., De Marchi, L., Speciale, N., Franceschini, E., Bernard, O., Basset, O.: A restoration framework for ultrasonic tissue characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2344–2360 (2011)

    Article  Google Scholar 

  17. O’Brien, M.S., Sinclair, A.N., Kramer, S.M.: Recovery of a sparse spike time series by l1 norm deconvolution. IEEE Trans. Signal Process. 42(12), 3353 (1994)

    Article  Google Scholar 

  18. Xin, J., Bilgutay, N.M.: Ultrasonic range resolution enhancement using l1 norm deconvolution. In: IEEE Ultrasonics Symposium, Baltimore (1993)

  19. Jin, H., Chen, J., Yang, K.: A blind deconvolution method for attenuative materials based on asymmetrical Gaussian model. J. Acoust. Soc. Am. 140(2), 1184 (2016)

    Article  Google Scholar 

  20. Li, X., Li, X., Liang, W., Chen, L.: ℓ0−norm regularized minimum entropy deconvolution for ultrasonic NDT & E. NDT&E Int. 47, 80–87 (2012)

    Article  Google Scholar 

  21. Donoho, D.: On minimum entropy deconvolution. In: Applied Time Series Analysis II, pp. 565–609. Academic Press, New York (1981)

    Chapter  Google Scholar 

  22. Delebarre, C., Bruneel, C., Miquet, P.: Digital signal processing method for multilayered media thickness measurement. In: IEEE Ultrasonics Symposium, Chicago (1988)

  23. Nasr, R., Falou, O., Shahin, A., Hysi, E., Wirtzfeld, L.A., Berndl, E., Kolios, M.C.: Mean scatterer spacing estimation using cepstrum-based continuous wavelet transform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(6), 1118–1126 (2020)

    Article  Google Scholar 

  24. Adam, D., Michailovich, O.: Blind deconvolution of ultrasound sequences using nonparametric local polynomial estimates of the pulse. IEEE Trans. Biomed. Eng. 49(2), 118–131 (2002)

    Article  Google Scholar 

  25. Taylor, J.R.B., Mijares Chan, J.J., Thomas, G.: Wavelet-based blind deconvolution of near-field ultrasound scans. IET Image Process. 9(8), 672–679 (2015)

    Article  Google Scholar 

  26. De Macedo, I.A.S., De Figueiredo, J.J.S., De Sousa, M.C., Nascimento, M.J.S.: Estimation of the seismic wavelet through homomorphic deconvolution and well log data: application on well-to-seismic tie procedure. Geophys. Prospect. 68(4), 1328–1340 (2020)

    Article  Google Scholar 

  27. Abedi, M.M., Torabi, S.: Improving homomorphic wavelet estimation by compensating for residual NMO stretching on stack section. Appl. Geophys. 12(4), 598–604 (2015)

    Article  Google Scholar 

  28. Park, Y., Choi, A., Kim, K.: Monaural sound localization based on reflective structure and homomorphic deconvolution. Sensors 17(10), 2189 (2017)

    Article  Google Scholar 

  29. Dackermann, U., Smith, W.A., Alamdari, M.M., Li, J., Randall, R.B.: Cepstrum-based damage identification in structures with progressive damage. Struct. Health Monit. 18(1), 87–102 (2018)

    Article  Google Scholar 

  30. Carcreff, E., Bourguignon, S., Idier, J., Simon, L.: A linear model approach for ultrasonic inverse problems with attenuation and dispersion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(7), 1191–1203 (2014)

    Article  Google Scholar 

  31. Zhang, G.M., Harvey, D.M., Braden, D.R.: Signal denoising and ultrasonic flaw detection via overcomplete and sparse representations. J. Acoust. Soc. Am. 124(5), 2963–2972 (2008)

    Article  Google Scholar 

  32. Qi, A., Zhang, G., Dong, M., Ma, H., Harvey, D.M.: An artificial bee colony optimization based matching pursuit approach for ultrasonic echo estimation. Ultrasonics 88, 1–8 (2018)

    Article  Google Scholar 

  33. Wu, B., Li, H., Huang, Y.: Sparse recovery of multiple dispersive guided-wave modes for defect localization using a Bayesian approach. Struct. Health Monit. 18(4), 1235–1252 (2019)

    Article  Google Scholar 

  34. Xu, C., Yang, Z., Qiao, B., Chen, X.: Traveling distance estimation for dispersive Lamb waves through sparse Bayesian learning strategy. Smart Mater. Struct. 28(8), 85008 (2019)

    Article  Google Scholar 

  35. Zhao, M., Zhou, W., Huang, Y., Li, H.: Sparse Bayesian learning approach for propagation distance recognition and damage localization in plate-like structures using guided waves. Struct. Health Monit. 20(1), 3–24 (2020)

    Article  Google Scholar 

  36. Fortineau, J.P., Vander, M.F., Fortineau, J., Feuillard, G.: Efficient algorithm for discrimination of overlapping ultrasonic echoes. Ultrasonics 73, 253–261 (2017)

    Article  Google Scholar 

  37. Zhang, G.M., Zhang, C.Z., Harvey, D.M.: Sparse signal representation and its applications in ultrasonic NDE. Ultrasonics 52(3), 351–363 (2012)

    Article  Google Scholar 

  38. Ruiz-Reyes, N., Vera-Candeas, P., Curpián-Alonso, J., Mata-Campos, R., Cuevas-Martínez, J.C.: New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT. NDT&E Int. 38(6), 453–458 (2005)

    Article  Google Scholar 

  39. Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE J-STSP 4(1), 606–617 (2007)

    Google Scholar 

  40. Jin, S.J., Sun, X., Ma, T.T., Ding, N., Lei, M.K., Lin, L.: Quantitative detection of shallow subsurface defects by using mode-converted waves in time-of-flight diffraction technique. J. Nondestruct. Eval. 39(2), 33 (2020)

    Article  Google Scholar 

  41. Wooh, S.C., Wei, C.: A homomorphic deconvolution technique for improved ultrasonic imaging of thin composite laminates. In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 17, pp. 807–814. Plenum Press, New York (1998)

    Chapter  Google Scholar 

  42. Hou, R., Xia, Y., Bao, Y., Zhou, X.: Selection of regularization parameter for l1-regularized damage detection. J. Sound Vib. 423, 141–160 (2018)

    Article  Google Scholar 

  43. Wang, J., Wang, S., Yuan, S., Li, J., Yin, H.: Stochastic spectral inversion for sparse-spike reflectivity by presetting the number of non-zero spikes as a prior sparsity constraint. J. Geophys. Eng. (2014). https://doi.org/10.1088/1742-2132/11/1/015010

    Article  Google Scholar 

  44. Kundu, D.: Estimating the number of sinusoids and its performance analysis. J. Stat. Comput. Simul. 60(4), 347–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51905079, 52075078) and the Liaoning Revitalization Talents Program (Grant No. XLYC1902082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Lin, L. & Jin, S.J. Improving Time Resolution of Ultrasonic Signals with Frequency-Domain Sparse Blind Deconvolution (FSBD) Method. J Nondestruct Eval 41, 37 (2022). https://doi.org/10.1007/s10921-022-00869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00869-y

Keywords

Navigation