Skip to main content
Log in

A New Micro Magnetic Bridge Probe in Magnetic Flux Leakage for Detecting Micro-cracks

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Magnetic flux leakage (MFL) testing has been widely used as an efficient non-destructive testing method to detect damage in ferromagnetic materials. It’s of great importance to improve the testing capability of MFL sensors. In this paper, a micro magnetic bridge method in MFL of high sensitivity is proposed to detect micro-cracks. This method consists of a micro magnetic bridge core and an induction coil. Furthermore, a novel micro magnetic bridge probe (MMBP) of higher spatial resolution is designed and developed with \(10~\upmu \hbox {m}\) width between the two sides of this MMBP in the testing magnetic bridge. The lift-off effect of this new MMBP is studied via finite element method and experimental verification. The results show this MMBP can achieve high sensitivity only when working with a micro-lift-off value. To examine the detecting capability of this MMBP, micro-cracks in magnetic particle inspection sensitivity testing pieces are all inspected, and the lowest depth value is only \(7~\upmu \hbox {m}\). The MMBP in this paper improves the testing capability of MFL to the micrometre scale and can be widely used to detect grinding micro-cracks in bearing rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang, Z.D., Gu, Y., Wang, Y.S.: A review of three magnetic NDT technologies. J. Magn. Magn. Mater. 324(4), 382–388 (2012)

    Article  Google Scholar 

  2. Sumyong, N., Prateepasen, A., Kaewtrakulpong, P.: Influence of scanning velocity and gap distance on magnetic flux leakage measurement. ECTI Trans. Electr. Eng. Electron. Commun. 5(1), 118–122 (2007)

    Google Scholar 

  3. Xu, F., Wang, X., Wu, H.: Inspection method of cable-stayed bridge using magnetic flux leakage detection: principle, sensor design, and signal processing. J. Mech. Sci. Technol. 26(3), 661–669 (2012)

    Article  Google Scholar 

  4. Chen, L., Li, X., Qin, G., et al.: Signal processing of magnetic flux leakage surface flaw inspect in pipeline steel. Russ. J. Nondestruct. Test. 44(12), 859–867 (2008)

    Article  Google Scholar 

  5. Förster, F.: New findings in the field of non-destructive magnetic leakage field inspection. NDT Int. 19(1), 3–14 (1986)

    Article  Google Scholar 

  6. Sun, Y., Kang, Y.: Magnetic mechanisms of magnetic flux leakage nondestructive testing. Appl. Phys. Lett. 103(18), 184104 (2013)

    Article  Google Scholar 

  7. Sun, Y., Kang, Y.: High-speed MFL method and apparatus based on orthogonal magnetisation for steel pipe. Insight Non-Destruct. Test. Cond. Monit. 51(10), 548–552 (2009)

    Article  Google Scholar 

  8. Sun, Y., Kang, Y.: High-speed magnetic flux leakage technique and apparatus based on orthogonal magnetization for steel pipe. Mater. Eval. 68(4), 452–458 (2010)

    MathSciNet  Google Scholar 

  9. Sun, Y., Feng, B., Liu, S., et al.: A methodology for identifying defects in the magnetic flux leakage method and suggestions for standard specimens. J. Nondestruct. Eval. 34(3), 1–9 (2015)

    Article  Google Scholar 

  10. Li, Y., Tian, G.Y., Ward, S.: Numerical simulation on magnetic flux leakage evaluation at high speed. NDT E Int. 39(5), 367–373 (2006)

    Article  Google Scholar 

  11. Wu, J.B., Tu, J., Yang, Y., et al.: Signal acquisition analysis in Hi-speed and Hi-precision MFL testing for steel pipe. In: Advanced Materials Research, vol. 718, pp. 875–880. Trans Tech Publications (2013)

  12. Wu, J., Sun, Y., Kang, Y., et al.: Theoretical analyses of MFL signal affected by discontinuity orientation and sensor-scanning direction. IEEE Trans. Magn. 51(1), 1–7 (2015)

    Google Scholar 

  13. Jianbo, W., Hui, F., Jie, W., et al.: The influence of non-uniform wall thickness on MFL testing for a steel pipe. Insight Non-Destruct. Test. Cond. Monit. 57(12), 703–708 (2015)

    Article  Google Scholar 

  14. Wu, J., Sun, Y., Feng, B., et al.: The effect of motion-induced eddy current on circumferential magnetization in MFL testing for a steel pipe. IEEE Trans. Magn. 53, 1–6 (2017)

    Article  Google Scholar 

  15. Chen, L., Que, P.W., Jin, T.: A giant-magnetoresistance sensor for magnetic-flux-leakage nondestructive testing of a pipeline. Russ. J. Nondestruct. Test. 41(7), 462–465 (2005)

    Article  Google Scholar 

  16. Kataoka, Y., Murayama, S., Wakiwaka, H., et al.: Application of GMR line sensor to detect the magnetic flux distribution for nondestructive testing. Int. J. Appl. Electromagn. Mech. 15(1–4), 47–52 (2001)

    Google Scholar 

  17. Singh, W.S., Rao, B.P.C., Vaidyanathan, S., et al.: Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor. Meas. Sci. Technol. 19(1), 015702 (2007)

    Article  Google Scholar 

  18. Singh, W.S., Rao, B.P.C., Thirunavukkarasu, S., et al.: Flexible GMR sensor array for magnetic flux leakage testing of steel track ropes. J. Sens. 2012 (2012)

  19. Park, G.S., Park, E.S.: Improvement of the sensor system in magnetic flux leakage-type nondestructive testing (NDT). IEEE Trans. Magn. 38(2), 1277–1280 (2002)

    Article  Google Scholar 

  20. Wu, J., Fang, H., Li, L., et al.: A lift-off-tolerant magnetic flux leakage testing method for drill pipes at wellhead. Sensors 17(1), 201 (2017)

    Article  Google Scholar 

  21. Sun, Y., Kang, Y.: A new MFL principle and method based on near-zero background magnetic field. NDT E Int. 43(4), 348–353 (2010)

    Article  MathSciNet  Google Scholar 

  22. Zuoying, H., Peiwen, Q., Liang, C.: 3D FEM analysis in magnetic flux leakage method. NDT e Int. 39(1), 61–66 (2006)

    Article  Google Scholar 

  23. Al-Naemi, F.I., Hall, J.P., Moses, A.J.: FEM modelling techniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections. J. Magn. Magn. Mater. 304(2), e790–e793 (2006)

    Article  Google Scholar 

  24. Cui, Z., Wang, X., Li, Y., et al.: High sensitive magnetically actuated micromirrors for magnetic field measurement. Sens. Actuators A: Phys. 138(1), 145–150 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Kang, Y., Tang, J. et al. A New Micro Magnetic Bridge Probe in Magnetic Flux Leakage for Detecting Micro-cracks. J Nondestruct Eval 37, 46 (2018). https://doi.org/10.1007/s10921-018-0499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0499-8

Keywords

Navigation