Skip to main content
Log in

Embedded PZT Sensor for Monitoring Mechanical Impedance of Hydrating Cementitious Materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

An embedded PZT (Lead Zirconate Titanate)-based sensor is developed for real-time, continuous, in-situ monitoring of hydrating cementitious materials after casting. The development of a multi-layer protection for a PZT patch, which provides a physical barrier with the surrounding medium while ensuring the sensitivity of measurement is described. Electrical impedance measurements from the sensor embedded inside mortar mixtures of different compositions are shown to sensitively provide an indication of changes in the state and the mechanical impedance of the material during periods associated with setting and early strength gain. An analytical procedure is developed for extracting the mechanical impedance of the surrounding cementitious material from the electromechanical measurements of the embedded PZT sensor. Changes in the mechanical impedance of mortars through periods of setting and early strength gain obtained from the embedded PZT sensor are validated using pin penetration, isothermal calorimetry and vibration-based measurements. Kinetics of hydration reaction obtained from isothermal calorimetry and increase in the penetration resistance during the setting behavior in the material, are accurately reflected in the increase in the mechanical impedance of the surrounding mortar obtained from the embedded PZT sensor. The continued increase in the mechanical impedance of the mortar after setting, up to 28 days, correlates well with the increase in elastic modulus of material obtained from vibration-based measurements. The durability of the sensor protection scheme is verified by evaluating the performance of sensors recovered from inside the mortar after long-term embedment. The embedded PZT sensor offers the potential for monitoring the local property development in a cementitious material from within the bulk of the structure and for use in quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Reinhardt, H.W., Grosse, C.U.: Report 31: advanced testing of cement-based materials during setting and hardening-report of RILEM technical committee 185-ATC, vol. 31. RILEM publications (2005)

  2. Cruz, J.M., Fita, I.C., Soriano, L., Payá, J., Borrachero, M.V.: The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cem. Concr. Res. 50, 51–61 (2013)

    Article  Google Scholar 

  3. Bentz, D.P.: A review of early-age properties of cement-based materials. Cem. Concr. Res. 38(2), 196–204 (2008)

    Article  Google Scholar 

  4. Christensen, B.J., Coverdale, T., Olson, R.A., Ford, S.J., Garboczi, E.J., Jennings, H.M., Mason, T.O.: Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application. J. Am. Ceram. Soc. 77(11), 2789–2804 (1994)

    Article  Google Scholar 

  5. McCarter, W.J., Chrisp, T.M., Starrs, G., Blewett, J.: Characterization and monitoring of cement-based systems using intrinsic electrical property measurements. Cem. Concr. Res. 33(2), 197–206 (2003)

    Article  Google Scholar 

  6. Tang, S.W., Cai, X.H., Zhou, W., Shao, H.Y., He, Z., Li, Z.J., Chen, E.: In-situ and continuous monitoring of pore evolution of calcium sulfoaluminate cement at early age by electrical impedance measurement. Constr. Build. Mater. 117, 8–19 (2016)

    Article  Google Scholar 

  7. Xiao, L., Li, Z.: Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement. Cem. Concr. Res. 38(3), 312–319 (2008)

    Article  Google Scholar 

  8. Chung, K.L., Kharkovsky, S.: Monitoring of microwave properties of early-age concrete and mortar specimens. IEEE Trans. Instrum. Meas. 64(5), 1196–1203 (2015)

    Article  Google Scholar 

  9. Topolář, L., Pazdera, L., Kucharczyková, B., Smutný, J., Mikulášek, K.: Using acoustic emission methods to monitor cement composites during setting and hardening. Appl. Sci. 7(5), 451 (2017)

    Article  Google Scholar 

  10. Gu, H., Song, G., Dhonde, H., Mo, Y.L., Yan, S.: Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Mater. Struct. 15(6), 1837 (2006)

    Article  Google Scholar 

  11. Zhang, J., Fan, T., Ma, H., Li, Z.: Monitoring setting and hardening of concrete by active acoustic method: effects of water-to-cement ratio and pozzolanic materials. Constr. Build. Mater. 88, 118–125 (2015)

    Article  Google Scholar 

  12. Kong, Q., Song, G.: A comparative study of the very early age cement hydration monitoring using compressive and shear mode smart aggregates. IEEE Sens. J. 17(2), 256–260 (2017)

    Article  Google Scholar 

  13. Reinhardt, H.W., Grosse, C.U.: Continuous monitoring of setting and hardening of mortar and concrete. Constr. Build. Mater. 18(3), 145–154 (2004)

    Article  Google Scholar 

  14. Subramaniam, K.V., Wang, X.: An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements. Cem. Concr. Res. 40, 33–44 (2010)

    Article  Google Scholar 

  15. Wang, X., Subramaniam, K.V., Lin, F.: Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste. Ultrasonics 50, 726–738 (2010)

    Article  Google Scholar 

  16. Popovics, J.S., Subramaniam, K.V.: Review of ultrasonic wave reflection applied to early-age concrete and cementitious materials. J. Nondestruct. Eval. 34(1), 1–12 (2015)

    Article  Google Scholar 

  17. Subramaniam, K.V., Wang, X.: Ultrasonic shear wave reflection method for direct determination of porosity and shear modulus in early-age cement paste and mortar. J. Eng. Mech. 142, 04016057 (2016)

    Article  Google Scholar 

  18. Reinhardt, H.W., Grosse, C.U., Herb, A.T.: Ultrasonic monitoring of setting and hardening of cement mortar–a new device. Mater. Struct. 33(9), 581–583 (2000)

    Article  Google Scholar 

  19. Ye, G., Lura, P., Van Breugel, K., Fraaij, A.L.A.: Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement. Cem. Concr. Compos. 26(5), 491–497 (2004)

    Article  Google Scholar 

  20. Qin, L., Ren, H.W., Dong, B.Q., Xing, F.: Acoustic emission behavior of early age concrete monitored by embedded sensors. Materials 7(10), 6908–6918 (2014)

    Article  Google Scholar 

  21. Shin, S.W., Yun, C.B.: Nondestructive curing monitoring of early-age concrete using Rayleigh wave velocity. Key Eng. Mater. 321, 318–321 (2006)

    Article  Google Scholar 

  22. Shin, S.W., Yun, C.B., Popovics, J.S., Kim, J.H.: Improved Rayleigh wave velocity measurement for nondestructive early-age concrete monitoring. Res. Nondestruct. Eval. 18(1), 45–68 (2007)

    Article  Google Scholar 

  23. Arnaud, L., Thinet, S.: Mechanical evolution of concrete during setting. Mater. Struct. 36(6), 355–364 (2003)

    Article  Google Scholar 

  24. Zhu, J., Tsai, Y.T., Kee, S.H.: Monitoring early age property of cement and concrete using piezoceramic bender elements. Smart Mater. Struct. 20(11), 115014 (2011)

    Article  Google Scholar 

  25. Liu, S., Zhu, J., Seraj, S., Cano, R., Juenger, M.: Monitoring setting and hardening process of mortar and concrete using ultrasonic shear waves. Constr. Build. Mater. 72, 248–255 (2014)

    Article  Google Scholar 

  26. Liang, C., Sun, F.P., Rogers, C.A.: An impedance method for dynamic analysis of active material systems. J. Vib. Acoust. 116(1), 120–128 (1994)

    Article  Google Scholar 

  27. Bhalla, S., Soh, C.K.: Structural impedance based damage diagnosis by piezo-transducers. Earthq. Eng. Struct. Dyn. 32, 1897–1916 (2003)

    Article  Google Scholar 

  28. Bhalla, S., Soh, C.K.: Structural health monitoring by piezo-impedance transducers. I: modeling. J. Aerosp. Eng. 17(4), 154–165 (2004)

    Article  Google Scholar 

  29. Giurgiutiu, V., Zagrai, A.N., Bao, J.J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 1(1), 41–61 (2002)

    Article  Google Scholar 

  30. Annamdas, V.G.M., Soh, C.K.: Three-dimensional electromechanical impedance model for multiple piezoceramic transducers–structure interaction. Journal of Aerospace Engineering 21(1), 35–44 (2008)

    Article  Google Scholar 

  31. Narayanan, A., Subramaniam, K.V.L.: Experimental evaluation of load-induced damage in concrete from distributed microcracks to localized cracking on electro-mechanical impedance response of bonded PZT. Constr. Build. Mater. 105, 536–544 (2016)

    Article  Google Scholar 

  32. Narayanan, A., Subramaniam, K.V.L.: Sensing of damage and substrate stress in concrete using electro-mechanical impedance measurements of bonded PZT patches. Smart Mater. Struct. 25(9), 095011 (2016)

    Article  Google Scholar 

  33. Yang, Y., Hu, Y., Lu, Y.: Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 8, 327–346 (2008)

    Article  Google Scholar 

  34. Park, G., Cudney, H., Inman, D.: Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst. 6(4), 153–160 (2000)

    Article  Google Scholar 

  35. Soh, C.K., Bhalla, S.: Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete. Smart Mater. Struct. 14(4), 671–684 (2005)

    Article  Google Scholar 

  36. Shin, S.W., Oh, T.K.: Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches. Constr. Build. Mater. 23(2), 1185–1188 (2009)

    Article  Google Scholar 

  37. Hey, F., Bhalla, S., Soh, C.K.: Optimized parallel interrogation and protection of piezo-transducers in electromechanical impedance technique. J. Intell. Mater. Syst. Struct. 17(6), 457–468 (2006)

    Article  Google Scholar 

  38. Shin, S.W., Qureshi, A.R., Lee, J.Y., Yun, C.B.: Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Mater. Struct. 17(5), 055002 (2008)

    Article  Google Scholar 

  39. Tawie, R., Lee, H.K.: Monitoring the strength development in concrete by EMI sensing technique. Constr. Build. Mater. 24(9), 1746–1753 (2010)

    Article  Google Scholar 

  40. Saravanan, T., Balamonica, K., Priya, C., Reddy, A., Gopalakrishnan, N.: Comparative performance of various smart aggregates during strength gain and damage states of concrete. Smart Mater. Struct. 24, 085016 (2015)

    Article  Google Scholar 

  41. Narayanan, A., Subramaniam, K.V.: Early age monitoring of cement mortar using embedded piezoelectric sensors. In: Proceedings of SPIE 9805, Health Monitoring of Structural and Biological Systems, p. 98052W (2016). doi:10.1117/12.2219655

  42. Tawie, R., Lee, H.K.: Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor. Smart Mater. Struct. 20(8), 085023 (2011)

    Article  Google Scholar 

  43. IS 12269:2013. Ordinary Portland cement, 53 grade—specification. Bureau of Indian Standards, New Delhi

  44. ASTM, C403, C403M-08.: Standard test method for time of setting of concrete mixtures by penetration resistance. ASTM International, West Conshohocken, PA (2008)

  45. Kolluru, S.V., Popovics, J.S., Shah, S.P.: Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders. Cem. Concr. Aggreg. 22(2), 81–89 (2000)

    Article  Google Scholar 

  46. Kocherla, A., Narayanan, A., Subramaniam, K.V.L.: Monitoring progressive changes in cementitious materials using embedded piezo-sensors. In: Proceedings of the SPIE 10170, Health Monitoring of Structural and Biological Systems, 101702I. doi:10.1117/12.2259842

Download references

Acknowledgements

The authors would like to acknowledge support of the Center of Excellence in Sustainable Development at I.I.T. Hyderabad, funded by the Ministry of Human Resource Development, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolluru V. L. Subramaniam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, A., Kocherla, A. & Subramaniam, K.V.L. Embedded PZT Sensor for Monitoring Mechanical Impedance of Hydrating Cementitious Materials. J Nondestruct Eval 36, 64 (2017). https://doi.org/10.1007/s10921-017-0442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0442-4

Keywords

Navigation