Skip to main content
Log in

Modelling and Analysis of Power Distribution of Electromagnetic Waves on Plane Surfaces Using Lock-in IR Thermography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The electric field distribution (magnitude only) near a radiating source (antenna) can be easily determined using infrared thermography. A thin screen (made of carbon fiber reinforced polymers) is placed in front of a microwave source. The electromagnetic waves impinging on the screen are partially absorbed, resulting in temperature rise of the screen. This temperature rise is monitored by an infrared camera. The temperature distribution thus observed is mapped to the electric field strength (magnitude of electric field) of the electromagnetic waves. Points on the screen where the temperature rise is low correspond to weak electromagnetic fields whereas points with high temperature rise correspond to strong electromagnetic fields. In this paper electro-thermal modelling is done so as to obtain the temperature distribution over the screen, when an electromagnetic field is incident on it. This model can conversely be used for finding electromagnetic field distributions from IR thermal images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sega, R., Benkelman, C.A., Norgard, J.D.: Measurement of antenna patterns at 94 GHz using infrared detection. In: Millimeter Wave Technology III, Procceedings SPIE, vol. 544 (1985)

  2. Balageas, D.L., et al.: Characterization of electromagnetic fields using lock-in IR thermography. Thermosense XV SPIE 1993, 274–285 (1933)

    Google Scholar 

  3. Prost, D., Issac, F., Reulet, P.: Large scale measurement of microwave electric field using infrared thermography and electromagnetic simulation. In: Progress In Electromagnetics Research Symposium Proceedings, pp. 1021–1024, Marrakesh, Morocco, 20–23 March (2011)

  4. Chiyo, N., Arai, M., Tanaka, Y., Nishikata, A., Hirano, T., Maeno, T.: Measurement technique for electromagnetic field intensity distribution using infrared 2-D lock-in amplifier. In: 2010 Annual Report Conference on Electrical Insulation and Dielectric

  5. Muzaffar, K., Tuli, S., Koul, S.: Infrared thermography for electromagnetic field pattern recognition. In: International Microwave and RF Conference, IMARC-2013, pp. 1–4, 14–16 December 2013

  6. Muzaffar, K., Tuli, S., Koul, S.: Infrared thermography for determination of wavelength of microwave signals from interference pattern. In: 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 774–778, 19–20 February 2015

  7. Muzaffar, K., Giri, L.I., Chatterjee, K., Tuli, S., Koul, S.: Fault detection of antenna arrays using infrared thermography. Infrared Phys. Technol. 71, 464–468 (2015)

    Article  Google Scholar 

  8. Muzaffar, K., Tuli, S., Koul, S.: Beam width estimation of microwave antennas using lock-in infrared thermography, vol. 72, pp. 244–248 (2015)

  9. Giri, L.I., Tuli, S., Sharma, M., Bugnon, P., Berger, H., Magrez, A.: Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106 (2014)

    Article  Google Scholar 

  10. Chatterjee, Krishnendu, Tuli, Suneet: Prediction of blind frequency in lock-in thermography using electro-thermal model based numerical simulation. J. Appl. Phys. 114, 174905 (2013)

    Article  Google Scholar 

  11. Maldague, X.V.: Infrared Technology for Nondestructive Testing. Wiley, New York (2001)

    Google Scholar 

  12. MicroCap\(^{TM}\) http://www.spectrum-soft.com

  13. Gupta, R., Tuli, S.: Electro-thermal modelling for estimation of defect parameters by stepped infrared thermography. NDT&E Int. 38, 11–19 (2005)

    Article  Google Scholar 

  14. Carlslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, London (1959)

    Google Scholar 

  15. Giri, L.I., Tuli, S., Sharma, M., Bugnon, P., Berger, H., Magrez, A.: Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106 (2014)

    Article  Google Scholar 

  16. Almond, D.P., Patel, P.: Photothermal Science and Techniques. Chapman & Hall, London (1996)

    Google Scholar 

  17. Kato, Hideyuki, Baba, Tetsuya, Okaji, Masahiro: Anisotropic thermal-diffusivity measurements by a new laser-heating technique. Meas. Sci. Technol. 12, 2074 (2001)

    Article  Google Scholar 

  18. Balageas, D., Levesque, P.: EMIR: a photothermal tool for electromagnetic phenomena characterization. Revue générale de Thermique 37(8), 725–739 (1998)

  19. Chatterjee, K.: Ph.D. Thesis, Indian Institute of Technology Delhi, India

  20. Giri, L.I.: Ph.D. Thesis, Indian Institute of Technology Delhi, India

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Muzaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, K., Chatterjee, K., Giri, L.I. et al. Modelling and Analysis of Power Distribution of Electromagnetic Waves on Plane Surfaces Using Lock-in IR Thermography. J Nondestruct Eval 36, 60 (2017). https://doi.org/10.1007/s10921-017-0439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0439-z

Keywords

Navigation