Skip to main content
Log in

Excitation Mechanism of Flexural-Guided Wave Modes F(1, 2) and F(1, 3) in Pipes

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The L(0, 2) and T(0, 1) modes are the two most commonly used modes in a pipe inspection; however, they are insensitive to axial cracks in the pipe. Therefore, it is meaningful to explore the excitation and utilization of the guided wave modes, which are different from the L(0, 2) and T(0, 1) modes. In this study, the excitation mechanism of two kinds of flexural-guided wave modes, F(1, 2) and F(1, 3), in a pipe is discussed in detail. The discussion is based on the dynamic response solution, which is obtained by the eigenfunction expansion method. Either mode can be excited by employing two transducer arrays. Each array is composed of sixteen elements. Moreover, the position, vibration direction, and phase of each element should be appropriately chosen. The validity of the excitation method is demonstrated by the numerical results obtained using the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Silk, M.G., Bainton, K.F.: The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonic 17, 11–19 (1979)

    Article  Google Scholar 

  2. Gazis, D.C.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders: I. Analytical foundation. J. Acoust. Soc. Am. 31, 568–573 (1959)

    Article  MathSciNet  Google Scholar 

  3. Liu, G.L., Qu, J.M.: Guided circumferential waves in a circular annulus. J. Appl. Mech. 65, 424–430 (1998)

    Article  Google Scholar 

  4. Zhao, X.L., Rose, J.L.: Guided circumferential shear horizontal waves in an isotropic hollow cylinder. J. Acoust. Soc. Am. 115, 1912–1916 (2004)

    Article  Google Scholar 

  5. Alleyne, D.N., Cawley, P.: The excitation of Lamb waves in pipes using dry coupled piezoelectric transducers. J. Nondestruct. Eval. 15, 11–20 (1996)

    Article  Google Scholar 

  6. Alleyne, D.N., Pavlakovic, B., Lowe, M.J.S., Cawley, P.: Rapid, long range inspection of chemical plant pipework using guided waves. Rev. Prog. Quant. Nondestruct. Eval. 20, 180–187 (2001)

    Article  Google Scholar 

  7. Kwun, H., Teller, C.M.: Magnetostrictive generation and detection of longitudinal, torsional, and flexural waves in a steel rod. J. Acoust. Soc. Am. 96, 1202–1204 (1994)

    Article  Google Scholar 

  8. Lowe, M.J.S., Alleyne, D.N., Cawley, P.: Defect detection in pipes using guided waves. Ultrasonics 36, 147–154 (1998)

    Article  Google Scholar 

  9. Alleyne, D.N., Lowe, M.J.S., Cawley, P.: The reflection of guided waves from circumferential notches in pipes. J. Appl. Mech. 65, 635–641 (1998)

    Article  Google Scholar 

  10. Lowe, M.J.S., Alleyne, D.N., Cawley, P.: The mode conversion of a guided wave by a part-circumferential notch in a pipe. J. Appl. Mech. 65, 649–656 (1998)

    Article  Google Scholar 

  11. Demma, A., Cawley, P., Lowe, M.J.S.: The reflection of the fundamental torsional mode from cracks and notches in pipes. J. Acoust. Soc. Am. 114, 611–625 (2003)

    Article  Google Scholar 

  12. Kim, Y.Y., Park, C.I., Cho, S.H., Han, S.W.: Torsional wave experiments with a new magnetostrictive transducer configuration. J. Acoust. Soc. Am. 117, 3459–3468 (2005)

    Article  Google Scholar 

  13. Ma, J., Simonetti, F., Lowe, M.J.S.: Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe. J. Acoust. Soc. Am. 120, 1871–1880 (2006)

    Article  Google Scholar 

  14. Sanderson, R.M., Catton, P.P.: The reflection of guided waves from multiple flaws in pipes. J. Nondestruct. Eval. 32, 384–397 (2013)

    Article  Google Scholar 

  15. Kim, H.W., Kwon, Y.E., Lee, J.K., Kim, Y.Y.: Higher torsional mode suppression in a pipe for enhancing the first torsional mode by using magnetostrictive patch transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 562–572 (2013)

    Article  Google Scholar 

  16. Nishino, H.: An Investigation of reflection coefficients of the T(0,1) mode guided waves at axisymmetric defects. Mater. Trans. 56, 120–128 (2015)

    Article  Google Scholar 

  17. Kumar, K.S., Balasubramaniam, K.: Simulations and experiments for the detection of flow-assisted corrosion in pipes. J. Press. Vessel Technol. 137, 061409 (2015)

    Article  Google Scholar 

  18. Kwun, H., Kim, S.Y., Matsumoto, H., Vinogradov, S.: Detection of axial cracks in tube and pipe using torsional guided waves. Rev. Prog. Quant. Nondestruct. Eval. 27, 193–199 (2008)

    Article  Google Scholar 

  19. Ratassepp, M., Fletcher, S., Lowe, M.J.S.: Scattering of the fundamental torsional mode at an axial crack in a pipe. J. Acoust. Soc. Am. 127, 730–740 (2010)

    Article  Google Scholar 

  20. Shin, H.J., Rose, J.L.: Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders. Ultrasonics 37, 353–363 (1999)

    Article  Google Scholar 

  21. Li, J., Rose, J.L.: Excitation and propagation of non-axisymmetric guided waves in a hollow cylinder. J. Acoust. Soc. Am. 109, 457–464 (2001)

    Article  Google Scholar 

  22. Hayashi, T., Kawashima, K., Sun, Z.Q., Rose, J.L.: Guided wave focusing mechanics in pipe. J. Press. Vessel Technol. 127, 317–321 (2005)

    Article  Google Scholar 

  23. Sun, Z.Q., Zhang, L., Rose, J.L.: Flexural torsional guided wave mechanics and focusing in pipe. J. Press. Vessel. Technol. 127, 471–478 (2005)

    Article  Google Scholar 

  24. Li, L., Rose, J.L.: Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes. Ultrasonics 44, 35–45 (2006)

    Article  Google Scholar 

  25. Reismann, H.: On the forced motion of elastic solids. Appl. Sci. Res. 18, 156–165 (1967)

    Article  MATH  Google Scholar 

  26. Eringen, A.C., Suhubi, E.S.: Elastodynamics, vol. 2. Academic Press, New York (1975)

    MATH  Google Scholar 

  27. Weaver, R.L., Pao, Y.H.: Axisymmetric elastic waves excited by a point source in a plate. J. Appl. Mech. 49, 821–836 (1982)

    Article  MATH  Google Scholar 

  28. Tang, L.G., Cheng, J.C.: Numerical analysis on laser-generated guided elastic waves in a hollow cylinder. J. Nondestruct. Eval. 21, 45–53 (2002)

    Article  Google Scholar 

  29. Tang, L.G., Wu, Z.J., Yang, W.Y., Liu, S.X.: Three-dimensional analytical solution for transient guided wave propagation in liquid-filled pipe systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1759–1773 (2012)

    Article  Google Scholar 

  30. Yin, X.C., Yue, Z.Q.: Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse. J. Appl. Mech. 69, 825–835 (2002)

    Article  MATH  Google Scholar 

  31. Ding, H.J., Wang, H.M., Chen, W.Q.: Elastodynamic solution for spherically symmetric problems of a multilayered hollow sphere. Arch. Appl. Mech. 73, 753–768 (2004)

    Article  MATH  Google Scholar 

  32. Ditri, J.J., Rose, J.L.: Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions. J. Appl. Phys. 72, 2589–2597 (1992)

    Article  Google Scholar 

  33. Sodano, H.A., Lloyd, J., Inman, D.J.: An experimental comparison between several active composite actuators for power generation. Smart Mater. Struct. 15, 1211–1216 (2006)

    Article  Google Scholar 

  34. Discalea, F.L., Matt, H., Bartoli, I., Coccia, S., Park, G., Farrar, C.: Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers. J. Intell. Mater. Syst. Struct. 18, 373–388 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374245 and 11674270), and the Natural Science Foundation of Fujian Province (Grant No. 2013J01163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wu, B. Excitation Mechanism of Flexural-Guided Wave Modes F(1, 2) and F(1, 3) in Pipes. J Nondestruct Eval 36, 59 (2017). https://doi.org/10.1007/s10921-017-0438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0438-0

Keywords

Navigation