Skip to main content

Advertisement

Log in

A Systematic Review and Implementation of IoT-Based Pervasive Sensor-Enabled Tracking System for Dementia Patients

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In today’s world, 46.8 million people suffer from brain related diseases. Dementia is most prevalent of all. In general scenario, a dementia patient lacks proper guidance in searching out the way to return back at his/her home. Thus, increasing the risk of getting damaged at individual-health level. Therefore, it is important to track their movement in more sophisticated manner as possible. With emergence of wearables, GPS sensors and Internet of Things (IoT), such devices have become available in public domain. Smartphone apps support caregiver to locate the dementia patients in real-time. RF, GSM, 3G, Wi-Fi and 4G technology fill the communication gap between patient and caregiver to bring them closer. In this paper, we incorporated 7 most popular wearables for investigation to seek appropriateness for dementia tracking in recent times in systematic manners. We performed an in-depth review of these wearables as per the cost, technology wise and application wise characteristics. A case novel study i.e. IoT-based Force Sensor Resistance enabled System-FSRIoT, has been proposed and implemented to validate the effectiveness of IoT in the domain of smarter dementia patient tracking in wearable form factor. The results show promising aspect of a whole new notion to leverage efficient assistive physio-medical healthcare to the dementia patients and the affected family members to reduce life risks and achieve a better social life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alzheimer’s Disease and Dementia. Dementia Types: Signs, Symptoms, and Diagnosis, 2017. Available: https://www.alz.org/dementia/types-of-dementia.asp

  2. 10 Warning Signs of Alzheimer’s, 2017. Available: https://www.alz.org/national/documents/tenwarnsigns.pdf

  3. World Alzheimer Report 2015 launched, 2015. Available: https://ncdalliance.org/news-events/news/world-alzheimer-report-2015-launched

  4. Living with Alzheimer’s, 2015. Available: https://www.wearable-technologies.com/2015/12/living-with-alzheimers/

  5. Thapliyal, H., Khalus, V., and Labrado, C., Stress Detection and Management: A Survey of Wearable Smart Health Devices. IEEE Consumer Electronics Magazine. 6(4):64–69, 2017.

    Google Scholar 

  6. Ray, P. P., Understanding the Role of Internet of Things Towards Smart e-Healthcare Services. Biomed. Res. 28(8):1604–1609, 2017.

    Google Scholar 

  7. Ray, P. P., A survey of IoT cloud platforms. Future Computing and Informatics Journal. 1(1–2):35–46, 2016.

    Google Scholar 

  8. Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., and Seneviratne, A., A Survey of Wearable Devices and Challenges. IEEE Communications Surveys and Tutorials. 19(4):2573–2620, 2017.

    Google Scholar 

  9. Mosenia, A., Sur-Kolay, S., Raghunathan, A., and Jha, N. K., Wearable Medical Sensor-Based System Design: A Survey. IEEE Transactions on Multi-Scale Computing Systems. 3(2):124–138, 2017.

    Google Scholar 

  10. Ismail, S., Barton, A., Gaydecki, P., Karimian, N., Karimian, S., Design and development of a compact wearable dipole GPS antenna. In: Proceedings of IEEE 46th European Microwave Conference (EuMC), 2016, p. 96–99.

  11. McKhann, G. M. et al., The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3):263–269, 2011.

    PubMed  Google Scholar 

  12. Santacruz, K. S., and Swagerty, D., Early diagnosis of dementia. Amer. Family Phys. 63(4):703–713, 2001.

    CAS  Google Scholar 

  13. Taler, V., and Phillips, N. A., Language performance in Alzheimer’s disease and mild cognitive impairment: A comparative review. J. Clin. Exp. Neuropsychol. 30(5):501–556, 2008.

    PubMed  Google Scholar 

  14. Laske, C. et al., Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimer’s Dementia 11(5):561–578, 2015.

    PubMed  Google Scholar 

  15. Geldmacher, D. S., Cost-effective recognition and diagnosis of dementia. In: Seminars Neurology. Vol. 22. New York: Thieme Medical Publishers, 2002, 063–070.

    Google Scholar 

  16. Clark, H. H., and Tree, J. E. F., Using uh and um in spontaneous speaking. Cognition 84(1):73–111, 2002.

    PubMed  Google Scholar 

  17. Kato, S., Endo, H., Homma, A., Sakuma, T., and Watanabe, K., Early detection of cognitive impairment in the elderly based on Bayesian mining using speech prosody and cerebral blood flow activation. In Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2013, pp. 5813–5816.

  18. Pirozzolo, F. J., Christensen, K. J., Ogle, K. M., Hansch, E. C., and Thompson, W. G., Simple and choice reaction time in dementia: Clinical implications. Neurobiol. Aging 2(2):113–117, 1981.

    CAS  PubMed  Google Scholar 

  19. Jarrold, W. et al., Aided diagnosis of dementia type through computer based analysis of pontaneous speech. Proc. ACL Workshop Comput. Linguistics Clin. Psychol.:27–36, 2014.

  20. Lehr, M., Prud, E. T., Shafran, H. I., and Roark, B., Fully automated neuropsychological assessment for detecting mild cognitive impairment. Proc. INTERSPEECH:1039–1042, 2012.

  21. Fraser, K. C., Meltzer, J. A., and Rudzicz, F., Linguistic features identify Alzheimer’s disease in narrative speech. J. Alzheimer’s Disease 49(2):407–422, 2015.

    Google Scholar 

  22. Roark, B., Mitchell, M., Hosom, J.-P., Hollingshead, K., and Kaye, J., Spoken language derived measures for detecting mild cognitive impairment. IEEE Trans. Audio, Speech, Language Process. 19(7):2081–2090, Sep. 2011.

    Google Scholar 

  23. Aramaki, E., Shikata, S., Miyabe, M., and Kinoshita, A., Vocabulary size in speech may be an early indicator of cognitive impairment. PLoS One 11(5):e0155195, 2016.

    PubMed  PubMed Central  Google Scholar 

  24. Wechsler, D., WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale. San Antonio: Psychological Corp., 1997.

    Google Scholar 

  25. Tanaka, H., et al., Automated social skills trainer. In Proc. 20th Int. Conf. Intell. User Interfaces, 2015, pp. 17–27.

  26. Jimison, H., Pavel, M., McKanna, J., and Pavel, J., Unobtrusive monitoring of computer interactions to detect cognitive status in elders. IEEE Trans. Inf. Technol. Biomed. 8(3):248–252, 2004.

    PubMed  Google Scholar 

  27. Y. Sakai, Y. Nonaka, K. Yasuda, and Y. I. Nakano, Listener agent for elderly people with dementia. In Proc. 7th Annu. ACM/IEEE Int. Conf. Hum.-Robot Interact., 2012, pp. 199–200.

  28. Folstein, M. F., Folstein, S. E., and McHugh, P. R., Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3):189–198, 1975.

    CAS  PubMed  Google Scholar 

  29. Harden, R. M., and Gleeson, F., Assessment of clinical competence using an objective structured clinical examination (OSCE). Med. Educ. 13(1):39–54, 1979.

    Google Scholar 

  30. Tanaka, H., Adachi H., Ukita N., Kudo T., and Nakamura S., Automatic detection of very early stage of dementia through multimodal interaction with computer avatars. In Proc. 18th ACM Int. Conf. Multimodal Interact., 2016, pp. 261–265.

  31. Orimaye, S. O., Wong, J. S.-M., and Golden, K. J., Learning predictive linguistic features for Alzheimer’s disease and related dementias using verbal utterances. In Proc. 1st Workshop Comput. Linguistics Clin. Psychol. (CLPsych), 2014, pp. 78–87.

  32. König, A. et al., Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimer’s Dementia, Diagnosis, Assessment Disease Monitor. 1(1):112–124, 2015.

    Google Scholar 

  33. Kaplan, E., Goodglass, H., and Weintraub, S., Boston Naming Test. Austin: Pro-ed, 2001.

    Google Scholar 

  34. Vinciarelli, A., Pantic, M., and Bourlard, H., Social signal processing: Survey of an emerging domain. Image Vis. Comput. 27(12):1743–1759, 2009.

    Google Scholar 

  35. Yang F., Sehili, M. A., Barras, C., and Devillers, L., Smile and laughter detection for elderly people-robot interaction. In Proc. Int. Conf. Social Robot., 2015, pp. 694–703.

  36. Asplund, K., Norberg, A., Adolfsson, R., and Waxman, H. M., Facial expressions in severely demented patients—A stimulus–response study of four patients with dementia of the Alzheimer type. Int. J. Geriatric Psychiatry 6(8):599–606, 1991.

    Google Scholar 

  37. Sturm, V. E. et al., Mutual gaze in Alzheimer’s disease, frontotemporal and semantic dementia couples. Soc. Cogn. Affect. Neurosci. 6(3):359–367, 2010.

    PubMed  PubMed Central  Google Scholar 

  38. Shimokawa, A. et al., Influence of deteriorating ability of emotional comprehension on interpatiental behavior in alzheimer-type dementia. Brain Cogn. 47(3):423–433, 2001.

    CAS  PubMed  Google Scholar 

  39. Fernandez-Duque, D., and Black, S. E., Impaired recognition of negative facial emotions in patients with frontotemporal dementia. Neuropsychologia 43(11):1673–1687, 2005.

    PubMed  Google Scholar 

  40. Baylor, A. L., and Kim, Y., Pedagogical agent design: The impact of agent realism, gender, ethnicity, and instructional role. In Intelligent Tutoring Systems (Lecture Notes in Computer Science) vol. 3220. Berlin, Germany: Springer, 2004, pp. 592–603.

    Google Scholar 

  41. Bickmore, T., and Cassell, J., Small talk and conversational storytelling in embodied conversational interface agents. In Proc. AAAI Fall Symp. Narrative Intell., 1999, pp. 87–92.

  42. Tanaka, H., Yoshino, K., Sugiyama, K., Nakamura, S., and Kondo, M., Multimodal interaction data between clinical psychologists and students for attentive listening modeling. In Proc. Conf. Oriental Chapter Int. Committee Coordination Standardization Speech Databases Assessment Techn. (O-COCOSDA), 2016, pp. 95–98.

  43. Endo, T. et al., Initial response time measurement in eye movement for dementia screening test. In: Proc. 15th IAPR Int. Conf. Mach. Vis. Appl. (MVA), 2017, pp. 262–265.

  44. Heldner, M., and Edlund, J., Pauses, gaps and overlaps in conversations. J. Phon. 38(4):555–568, 2010.

    Google Scholar 

  45. American Psychiatric Association, Diagnostic and statistical manual, 4th edn, text revision (DSM-IVTR). Washington: Amer. Psychiatric Assoc., 2000.

    Google Scholar 

  46. Crawford, J. R., and Garthwaite, P. H., Investigation of the single case in neuropsychology: Confidence limits on the abnormality of test scores and test score differences. Neuropsychologia 40(8):1196–1208, 2002.

    CAS  PubMed  Google Scholar 

  47. Mower, E., Black, M. P., Flores, E., Williams, M., and Narayanan, S., Rachel: Design of an emotionally targeted interactive agent for children with autism. In Proc. IEEE Int. Conf. Multimedia Expo (ICME), 2011, pp. 1–6.

  48. Bishop, C. M., Pattern recognition. In: Machine Learning. Vol. 128. New York, NY, USA: Springer-Verlag, 2006, 1–58.

    Google Scholar 

  49. Hanson, M., Glottal characteristics of female speakers. Ph.D. dissertation, Dept. Division Appl. Sci., Harvard Univ., Cambridge, 1995.

  50. Bucks, R., Singh, S., Cuerden, J. M., and Wilcock, G. K., Analysis of spontaneous, conversational speech in dementia of alzheimer type: Evaluation of an objective technique for analysing lexical performance. Aphasiology 14(1):71–91, 2000.

    Google Scholar 

  51. Wright, H. H., Silverman, S., and Newhoff, M., Measures of lexical diversity in aphasia. Aphasiology 17(5):443–452, 2003.

    Google Scholar 

  52. Herbert, R., Hickin, J., Howard, D., Osborne, F., and Best, W., Do picturenaming tests provide a valid assessment of lexical retrieval in conversation in aphasia? Aphasiology 22(2):184–203, 2008.

    Google Scholar 

  53. GPS Smart Sole, 2017. Available: http://gpssmartsole.com/gpssmartsole/

  54. Freedom GPS Locator Watch, 2017. Available: http://www.bluewatersecurityprofessionals.com/elderlytracking.htm

  55. Safelink, 2017. Available: http://safelinkgps.com/

  56. Mindme Locate, 2017. Available: http://www.mindme.care/mindme-locate.html

  57. MX-LOCare™, 2017. Available: https://www.adiantmobile.com/mx-locare-watch/

  58. iTraq3, 2017. Available: https://www.itraq.com/

  59. PocketFinder+, 2017. Available: http://pocketfinder.com/patientaltracker/

  60. PLI-1000 Patiental Locator System, 2017. Available: https://projectlifesaver.org/locating-technology/pli-1000-patiental-locator-system/

  61. Revolutionary Tracker, 2017. Available: https://matt81853.wixsite.com/website

  62. This Kid Designed A Wearable Health Device For His Grandfather With Alzheimer’s, 2016. Available: https://www.fastcompany.com/3034118/this-kid-designed-a-wearable-health-device-for-his-grandfather-with-alzheimers

  63. Wang, Z., Cui, S., Han, S., Song, K., Zhu, C., Matveevich, M. I., and Yurievich, O. S., A Novel Magnetic Coupling Mechanism for Dynamic Wireless Charging System for Electric Vehicles. IEEE Trans. Veh. Technol.:99, 2017 (pre-print).

  64. Sensors for Altitude Measurement, 2017. Available: http://www.amsys.info/special/height.htm

  65. How Pedometers Work?, 2015. Available: https://www.runtastic.com/blog/en/hot-topics-and-reviews/how-pedometers-work/

  66. Accelerometers: Introduction to Acceleration Measurement, 2017. Available: https://in.omega.com/prodinfo/accelerometers.html

  67. What is Geo-Fencing? Putting location to work, 2017. Available: https://www.cio.com/article/2383123/mobile/geo-fencing-explained.html

  68. Geo-Fencing API, 2017. Available: https://www.w3.org/TR/geo-fencing/

  69. Raza, U., Kulkarni, P., and Sooriyabandara, M., Low Power Wide Area Networks: An Overview. IEEE Communications Surveys & Tutorials. 19(2):855–873, 2017.

    Google Scholar 

  70. Shinozuka, K., Wearable Sensors: A Novel Healthcare Solution for the Aging Society. https://archive.googlesciencefair.com/projects/en/2014/d5b1aaea6cc6d609d3cca8ad616d2aa39c06258ad16327cbfaf8250de85d876c

  71. FSR guide. https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf

  72. FSR Hook-Up Guide. https://learn.sparkfun.com/tutorials/force-sensitive-resistor-hookup-guide

  73. Saragih, J. M., Lucey, S., and Cohn, J. F., Face alignment through subspace constrained mean-shifts. In Proc. IEEE 12th Int. Conf. Comput. Vis., 2009, pp. 1034–1041.

  74. I. Naim, M. I. Tanveer, D. Gildea, and Hoque, M. E., 2015. Automated analysis and prediction of job interview performance. Available: https://arxiv.org/abs/1504.03425

  75. Lyons, M., Akamatsu, S., Kamachi, M., and Gyoba, J., Coding facial expressions with Gabor wavelets. In Proc. 3rd IEEE Int. Conf. Autom. Face Gesture Recognit., 1998, pp. 200–205.

  76. Cohn, J. F., et al., Detecting depression from facial actions and vocal prosody. In Proc. 3rd Int. Conf. Affective Comput. Intell. Interact. Workshops (ACII), 2009, pp. 1–7.

  77. Metz, C. E., Basic principles of ROC analysis. Semin. Nucl. Med. 8(4):283–298, 1978.

    CAS  PubMed  Google Scholar 

  78. Lunsford, R., Heeman, P. A., Black, L., and Santen, J. V., Autism and the use of fillers: Differences between ‘um’ and ‘uh. In Proc. DiSS-LPSS Joint Workshop, 2010, pp. 107–110.

  79. Chaspari, T., Bone, D., Gibson, J., Lee, C.-C., and Narayanan, S., Using physiology and language cues for modeling verbal response latencies of children with ASD. In Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2013, pp. 3702–3706.

  80. Ray, P. P., Dash, D., and De, D., Edge Computing for Internet of Things: A Survey, e-Healthcare Case Study and Future Direction. Journal of Network and Computer Applications, Elsevier, 2019, (Accepted) (SCI) (IF: 3.9).

  81. Ray, P. P., Data Analytics: India Needs Agency for Health Data. Curr. Sci. 112(6):1082, 2017.

    Google Scholar 

  82. Ray, P. P., Internet of Things Cloud Enabled MISSENARD Index Measurement for Indoor Occupants. Measurement, Elsevier 92:157–165, 2016. https://doi.org/10.1016/j.measurement.2016.06.014.

    Article  Google Scholar 

  83. Zhou, L., Fraser, K. C., and Rudzicz, F., Speech recognition in Alzheimer’s disease and in its assessment. Proc. INTERSPEECH:1948–1952, 2016.

  84. Meilán, J. J., Martínez-Sánchez, F., Carro, J., López, D. E., Millian-Morell, L., and Arana, J. M., Speech in Alzheimer’s disease: Can temporal and acoustic parameters discriminate dementia? Dementia Geriatric Cognit. Disorders 37(5–6):327–334, 2014.

    Google Scholar 

  85. Horley, K., Reid, A., and Burnham, D., Emotional prosody perception and production in dementia of the Alzheimer’s type. J. Speech, Lang., Hearing Res. 53(5):1132–1146, 2010.

    Google Scholar 

  86. Paeschke, A., and Sendlmeier, W. F., Prosodic characteristics of emotional speech: Measurements of fundamental frequency movements. In Proc. ISCA Tuts. Res. Workshop (ITRW) Speech Emotion, 2000, pp. 75–80.

  87. Ray, P. P., A Survey on Visual Programming Languages in Internet of Things. Scientific Programming, Hindawi, Vol. 2017, Article ID 1231430, 2017.

  88. Hoque, M., and Picard, R. W., Acted vs. Natural frustration and delight: Many people smile in natural frustration. In Proc. IEEE Int. Conf. Autom. Face Gesture Recognit. Workshops (FG), 2011, pp. 354–359.

  89. Ray, P. P., Communicating Through Visible Light: Internet of Things Perspective”, Current Science Citation Indexence, Indian Academy of Science, Vol. 111 (12), pp. 1903–1905, 2016.

  90. Hoque, M., and Picard, R. W., Acted vs. Natural frustration and delight: Many people smile in natural frustration. In Proc. IEEE Int. Conf. Autom. Face Gesture Recognit. Workshops (FG), 2011, pp. 354–359.

  91. G. Trovato et al., “A novel culture-dependent gesture selection system for a humanoid robot performing greeting interaction. In Proc. Int. Conf. Social Robot., 2014, pp. 340–349.

  92. B. Roark, M. Mitchell, and K. Hollingshead, Syntactic complexity measures for detecting mild cognitive impairment. In Proc. Workshop Biolo., Transl., Clin. Lang. Process. (BioNLP), 2007, pp. 1–8.

  93. Hess, U., Adams, R. B., Simard, A., Stevenson, M. T., and Kleck, R. E., Smiling and sad wrinkles: Age-related changes in the face and the perception of emotions and intentions. J. Exp. Soc. Psychol. 48(6):1377–1380, 2012.

    PubMed  PubMed Central  Google Scholar 

  94. Saffran, E. M., Berndt, R. S., and Schwartz, M. F., The quantitative analysis of agrammatic production: Procedure and data. Brain Lang. 37(3):440–479, 1989.

    CAS  PubMed  Google Scholar 

  95. Vermeulen, J., Bastiaanse, R., and Van Wageningen, B., Spontaneous speech in aphasia: A correlational study. Brain Lang. 36(2):252–274, 1989.

    CAS  PubMed  Google Scholar 

  96. Chao, C., and Thomaz, A. L., Turn taking for human–robot interaction. In: Proc. AAAI Fall Symp. Dialog Robots, 2010, pp. 132–134.

  97. Tanaka, H. et al., Detecting Dementia Through Interactive Computer Avatars. IEEE Journal of Translational Engineering in Health and Medicine 5:1–11, 2017 Art no. 2200111.

    Google Scholar 

  98. Solis, M., Digital Tracking of Cognitive Decline: Researchers Are Co-opting Computers in their Efforts to Detect Early Signs of Dementia. IEEE Pulse 8(2):16–20, 2017.

    PubMed  Google Scholar 

  99. Ray, P. P., An IR Sensor Based Smart System to Approximate Body Core Temperature. Journal of Medical Systems, Springer 41:123, 2017.

    Google Scholar 

  100. Ray, P. P., Agarwal, S., “Bluetooth 5 and Internet of Things: Potential and Architecture”, IEEE International Conference on Signal Processing, Communication & Embedded Systems (SCOPES), Paralakhemundi, pp. 1461–1465, 2016. https://doi.org/10.1109/SCOPES.2016.7955682

    Book  Google Scholar 

  101. Ray, P. P., An Internet of Things based Approach to Thermal Comfort Measurement and Monitoring. IEEE International Conference on Advances in Computing and Communications (ICACCS), pp. 1–7, 2015, 10.1109/ICACCS.2016.7586398, 2016.

  102. Ray, P. P., Towards an Internet of Things based Architectural Framework for Defence. IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, pp. 411–416. 10.1109/ICCICCT.2015.7475314, 2015.

  103. Enshaeifar, S. et al., The Internet of Things for Dementia Care. IEEE Internet Comput. 22(1):8–17, 2018.

    Google Scholar 

  104. Demiris, G. et al., Technologies for an aging society: a systematic review of ‘smart home’ applications. Yearbook of Medical Informatics 3:33–40, 2008.

    Google Scholar 

  105. Doukas, C., and Malogiannis, I., Bringing IoT and cloud computing towards pervasive healthcare. Proceedings of IEEE International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 12), 2012, pp. 922–926.

  106. Yang, G. et al., A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Transactions on Industrial Informatics 10(4):2180–2191, 2014.

    Google Scholar 

  107. Catarinucci, L. et al., An IoT-aware architecture for smart healthcare systems. IEEE Internet of Things 1(2):515–526, 2015.

    Google Scholar 

  108. Amendola, S. et al., RFID technology for IoT-based patiental healthcare in smart spaces. IEEE Internet of Things 1(2):144–152, 2014.

    Google Scholar 

  109. Barnaghi, P., and Sheth, A., On searching the Internet of Things: Requirements and challenges. IEEE Intell. Syst. 31(6):71–75, 2016.

    Google Scholar 

  110. Barnaghi, P., Sheth, A., and Henson, C., From data to actionable knowledge: Big data challenges in the web of things [guest editors’ introduction]. IEEE Intell. Syst. 28(6):6–11, 2013.

    Google Scholar 

  111. Ray, P. P., Creating Values out of Internet of Things: An Industrial Perspective. Journal of Computer Networks and Communications, Hindawi, 2016. https://doi.org/10.1155/2016/1579460.

    Google Scholar 

  112. Shi, J., Zheng, X., Li, Y., Zhang, Q., and Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of alzheimer’s disease. IEEE Journal of Biomedical and Health Informatics 22(1):173–183, 2018.

    PubMed  Google Scholar 

  113. Al-Qazzaz, N. K., Ali, S. H. B. M., Ahmad, S. A., Chellappan, K., Islam, M. S., and Escudero, J., Role of eeg as biomarker in the early detection and classification of dementia. Sci. World J. 2014:906038, 2014.

    Google Scholar 

  114. Ray, P. P., A Survey on Internet of Things Architectures. Journal of King Saud University - Computer and Information Sciences, Elsevier, 2016. https://doi.org/10.1016/j.jksuci.2016.10.003.

    Google Scholar 

  115. Morabito, F. C., Campolo, M., Ieracitano, C., Ebadi, J. M., Bonanno, L., Bramanti, A., Desalvo, S., Mammone, N., and Bramanti, P., Deep convolutional neural networks for classification of mild cognitive impaired and alzheimer’s disease patients from scalp EEG recordings. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), 2016, pp. 1–6.

  116. R. Alam, M. Anderson, A. Bankole, and J. Lach, Inferring physical agitation in dementia using smartwatch and sequential behavior models. In 2018 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), 2018, pp. 170–173.

  117. Ray, P. P., and Thapa, N., “A Systematic Review on Real-time Automated Measurement of IV Fluid Level: Status and Challenges”, Measurement. Elsevier 129:343–348, 2018.

    Google Scholar 

  118. Ray, P. P., Minimizing Dependency On Internetwork: Is Dew Computing a Solution? Transactions on Emerging Telecommunications Technologies, Wiley-Blackwell, (Accepted), 30(1), 2019.

  119. Mendez, M. F., Early-onset alzheimer disease. Neurol. Clin. 35:263–281, 2017.

    PubMed  PubMed Central  Google Scholar 

  120. Agosta, F., Caso, F., and Filippi, M., Dementia and neuroimaging. J. Neurol. 260(2):685–691, 2013.

    PubMed  Google Scholar 

  121. Jellinger, K. A., Dementia with lewy bodies and parkinson’s diseasedementia: current concepts and controversies. J. Neural Transm., (Vienna, Austria: 1996) 125(4):615–650, 2018.

    CAS  PubMed  Google Scholar 

  122. Ghosh, S., and Lippa, C. F., Clinical subtypes of frontotemporal dementia. Am. J. Alzheimers Dis. Other Dement. 30(7):653–661, 2015.

    Google Scholar 

  123. Ray, P. P., A Generic Internet of Things Architecture for Smart Sports. IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies x

  124. Mills, S., Cain, J., Purandare, N., and Jackson, A., Biomarkers of cerebrovascular disease in dementia, The British Journal of Radiology. 80(2):S128–S145, 2007.

    PubMed  Google Scholar 

  125. Liu, M., Zhang, D., and Shen, D., Relationship induced multi-template learning for diagnosis of alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6):1463–1474, 2016.

    PubMed  PubMed Central  Google Scholar 

  126. Kurth, J., Sakretz, M., Teipel, S., and Krause, B. J., Molecular imaging of dementia. Geriatric Mental Health Care 1(3):56–62, 2013.

    Google Scholar 

  127. Valkanova, V., and Ebmeier, K. P., Neuroimaging in dementia. Maturitas 79(2):202–208, 2014.

    PubMed  Google Scholar 

  128. Niessen, W. J., Mr brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics. Med. Image Anal. 33:107–113, 2016.

    PubMed  Google Scholar 

  129. Goujon, A., Mejdoubi, M., Purcell, Y., Banydeen, R., Colombani, S., and Arrigo, A., Can mri water apparent diffusion coefficient (adc) value discriminate between idiopathic normal pressure hydrocephalus, alzheimer’s disease and subcortical vascular dementia? Journal of Neuroradiology. Journal de Neuroradiologie 45(1):15–22, 2018.

    PubMed  Google Scholar 

  130. Joki, H., Higashiyama, Y., Nakae, Y., Kugimoto, C., Doi, H., Kimura, K., Kishida, H., Ueda, N., Nakano, T., Takahashi, T., Koyano, S., Takeuchi, H., and Tanaka, F., White matter hyperintensities on mri in dementia with lewy bodies, parkinson’s disease with dementia, and alzheimer’s disease. J. Neurol. Sci. 385:99–104, 2018.

    PubMed  Google Scholar 

  131. Ray, P. P., Internet of Things based Smart Measurement and Monitoring of Wood Equilibrium Moisture Content. IEEE International Conference on Smart Structures and Systems (ICSSS), https://doi.org/10.1109/SMARTSENS.2015.7873612, 2015.

  132. Kim, J., and Lee, B., Automated discrimination of dementia spectrum disorders using extreme learning machine and structural t1 mri features. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 1990–1993.

  133. Zeighami, Y., Fereshtehnejad, S.-M., Dadar, M., Collins, D. L., Postuma, R. B., Mišić, B., and Dagher, A., A clinical-anatomical signature of parkinson’s disease identified with partial least squares and magnetic resonance imaging. NeuroImage, 2017.

  134. Ramírez, J., Górriz, J., Ortiz, A., Martínez-Murcia, F., Segovia, F., Salas-Gonzalez, D., Castillo-Barnes, D., Illán, I., Puntonet, C., and Alzheimer’s Disease Neuroimaging Initiative, Ensemble of random forests one vs. rest classifiers for mci and ad prediction using anova cortical and subcortical feature selection and partial least squares. J. Neurosci. Methods 302:47–57, 2018.

    PubMed  Google Scholar 

  135. Canu, E., Agosta, F., Mandic-Stojmenovic, G., Stojkovic, T., Stefanova, E., Inuggi, A., Imperiale, F., Copetti, M., Kostic, V. S., and Filippi, M., Multiparametric mri to distinguish early onset alzheimer’s disease andbehavioural variant of frontotemporal dementia. NeuroImage: Clinical 15:428–438, 2017.

    Google Scholar 

  136. Ray, P. P., A Generic Internet of Things Architecture for Smart Sports. IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, pp. 405–410, https://doi.org/10.1109/ICCICCT.2015.7475313, 2015.

  137. Harper, L., Fumagalli, G. G., Barkhof, F., Scheltens, P., O’Brien, J. T., Bouwman, F., Burton, E. J., Rohrer, J. D., Fox, N. C., Ridgway, G. R., and Schott, J. M., Mri visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139(4):1211–1225, 2016.

    PubMed  PubMed Central  Google Scholar 

  138. Tohka, J., Moradi, E., Huttunen, H., and Initiative, A.’s. D. N., Comparison of feature selection techniques in machine learning for anatomical brain mri in dementia. Neuroinformatics 14(3):279–296, 2016.

    PubMed  Google Scholar 

  139. Rabeh, A. B., Benzarti, F., and Amiri, H., Diagnosis of Alzheimer diseases in early step using svm (support vector machine). In 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV), 2016, pp. 364–367.

  140. Tong, T., Wolz, R., Gao, Q., Guerrero, R., Hajnal, J. V., and Rueckert, D., Multiple instance learning for classification of dementia in brain mri. Med. Image Anal. 18(5):808–818, 2014.

    PubMed  Google Scholar 

  141. Boser, B. E., Guyon, I. M., and Vapnik, V. N., A training algorithm for optimal margin classifiers. Proceedings of Annual Acm Workshop on Computational Learning Theory 5:144–152, 1992.

    Google Scholar 

  142. Ray, P. P., Internet of Things for Sports (IoTSport): An architectural framework for sports and recreational activity. In Proceeding of IEEE International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), Vizag, pp-79-83, https://doi.org/10.1109/EESCO.2015.7253963, 2015.

  143. Alkabawi, E. M., Hilal, A. R., and Basir O. A., Feature abstraction for early detection of multi-type of dementia with sparse auto-encoder. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 3471–3476.

  144. Z. Wang, P. J. Markiewicz, G. Platsch, J. Kornhuber, T. Kuwert, and D. Merhof, Comparison of methods for classification of alzheimer’s disease, frontotemporal dementia and asymptomatic controls. In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 2013, pp. 1–6.

  145. Zheng, W., Yao, Z., Hu, B., Gao, X., Cai, H., and Moore, P., Novel cortical thickness pattern for accurate detection of alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 48(4):995–1008, 2015.

    CAS  PubMed  Google Scholar 

  146. Ray, P. P., Home Health Hub Internet of Things (H3IoT): An Architectural Framework for Monitoring Health of Elderly People. In Proceeding of IEEE ICSEMR, ISBN: 9789380222745, Chennai, pp. 1–4, https://doi.org/10.1109/ICSEMR.2014.7043542, 2014.

  147. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., and Sánchez, C. I., A survey on deep learning in medical image analysis. Med. Image Anal. 42:60–88, 2017.

    PubMed  Google Scholar 

  148. Ray, P. P., Internet of Things based Physical Activity Monitoring (PAMIoT): An Architectural Framework to Monitor Human Physical Activity. Kolkata: Proceeding of IEEE CALCON, 2014, 32–34.

    Google Scholar 

  149. Alkabawi, E. M., Hilal, A. R., and Basir, O. A., Computer-aided classification of multi-types of dementia via convolutional neural networks. In 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2017, pp. 45–50.

  150. Akhila, J. A., Markose, C., and Aneesh, R. P., Feature extraction and classification of dementia with neural network. In 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017, pp. 1446–1450.

  151. Dolph, C. V., Alam, M., Shboul, Z., Samad, M. D., and Iftekharuddin, K. M., Deep learning of texture and structural features for multiclass alzheimer’s disease classification. In 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 2259–2266.

  152. Faturrahman, M., Wasito, I., Hanifah, N., and Mufidah, R., Structural mri classification for alzheimer’s disease detection using deep belief network. in International Conference on Information & Communication Technology and System, 2017, pp. 37–42.

  153. Ray, P. P., Nano Computer Design Based on Intra Body Nanoscale Neuro-Spike Communication: a Nanonetwork Paradigm. ISBN 978–1–4673-4698-6. In proceeding of IEEE International Conference on Communications, Devices and Intelligent Systems (CODIS), JU, Kolkata, pp. 314–317. https://doi.org/10.1109/CODIS.2012.6422199, 2012.

  154. Suk, H.-I., Lee, S.-W., Shen, D., and Alzheimer’s Disease Neuroimaging Initiative, Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37:101–113, 2017.

    PubMed  PubMed Central  Google Scholar 

  155. Islam, J., and Zhang, Y., A novel deep learning based multi-class classification method for alzheimer’s disease detection using brain MRI data. In International Conference on Brain Informatics, 2017, pp. 213–222.

  156. Liu, J., Shang, S., Zheng, K., and Wen, J.-R., Multi-view ensemble learning for dementia diagnosis from neuroimaging: An artificial neural network approach. Neurocomputing 195:112–116, 2016.

    Google Scholar 

  157. Ithapu, V. K., Singh, V., Okonkwo, O. C., Chappell, R. J., Dowling, N. M., and Johnson, S. C., Imaging-based enrichment criteria using deep learning algorithms for efficient clinical trials in mild cognitive impairment. Alzheimers Dement. 11(12):1489–1499, 2015.

    PubMed  PubMed Central  Google Scholar 

  158. Choi, H., Deep learning in nuclear medicine and molecular imaging: Current perspectives and future directions. Nucl. Med. Mol. Imaging 52(2):109–118, 2018.

    CAS  PubMed  Google Scholar 

  159. Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., and Alzheimer’s Disease Neuroimaging Initiative, Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural MR and FDG-pet images. Sci. Rep. 8(1):5697, 2018.

    PubMed  PubMed Central  Google Scholar 

  160. Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., and ADNI, Multiscale deep neural network based analysis of fdg-pet images for the early diagnosis of alzheimer’s disease. Med. Image Anal. 46:26–34, 2018.

    PubMed  Google Scholar 

  161. Ju, R., Hu, C., Zhou, P., and Li, Q., “Early diagnosis of alzheimer’s disease based on resting-state brain networks and deep learning,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1–1, 2017.

  162. Anazodo, U. C., Finger, E., Kwan, B. Y. M., Pavlosky, W., Warrington, J. C., Günther, M., Prato, F. S., Thiessen, J. D., and Lawrence, K. S. S., Using simultaneous pet/mri to compare the accuracy of diagnosing frontotemporal dementia by arterial spin labelling mri and fdg-pet. NeuroImage. Clinical 17:405–414, 2018.

    PubMed  Google Scholar 

  163. Shi, J., Zheng, X., Li, Y., Zhang, Q., and Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of alzheimer’s disease. IEEE Journal of Biomedical and Health Informatics 22(1):173–183, 2018.

    PubMed  Google Scholar 

  164. Al-Qazzaz, N. K., Ali, S. H. B. M., Ahmad, S. A., Chellappan, K., Islam, M. S., and Escudero, J., Role of eeg as biomarker in the early detection and classification of dementia. TheScientificWorldJournal 2014:906038, 2014.

    PubMed  PubMed Central  Google Scholar 

  165. Morabito, F. C., Campolo, M., Ieracitano, C., Ebadi, J. M., Bonanno, L., Bramanti, A., Desalvo, S., Mammone, N., and Bramanti, P., Deep convolutional neural networks for classification of mild cognitive impaired and alzheimer’s disease patients from scalp eeg recordings. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), 2016, pp. 1–6.

  166. Alam, R., Dugan, J., Homdee, N., Gandhi, N., Ghaemmaghami, B., Meda, H., Bankole, A., Anderson, M., Gong, J., Smith-Jackson, T., and Lach, J., Besi: Reliable and heterogeneous sensing and intervention for in-home health applications. In 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2017, pp. 147–156.

  167. R. Alam, M. Anderson, A. Bankole, and J. Lach, “Inferring physical agitation in dementia using smartwatch and sequential behavior models,” in 2018 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), 2018, pp. 170–173.

  168. 2018 alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 14(3): 367–429, 2018.

  169. World health organization, http://www.who.int/news-room/facts-inpictures/detail/dementia, Accessed: 2018-05-25.

  170. Mendez, M. F., Early-onset alzheimer disease. Neurol. Clin. 35:263–281, 2017.

    PubMed  PubMed Central  Google Scholar 

  171. Agosta, F., Caso, F., and Filippi, M., Dementia and neuroimaging. J. Neurol. 260(2):685–691, 2013.

    PubMed  Google Scholar 

  172. Jellinger, K. A., Dementia with lewy bodies and parkinson’s diseasedementia: current concepts and controversies. J. Neural Transm. (Vienna, Austria: 1996) 125(4):615–650, 2018.

    CAS  PubMed  Google Scholar 

  173. Ghosh, S., and Lippa, C. F., Clinical subtypes of frontotemporal dementia. Am. J. Alzheimers Dis. Other Dement. 30(7):653–661, 2015.

    Google Scholar 

  174. Iwatsubo, T., Alzheimer’s disease neuroimaging initiative (ADNI). Japanese Journal of Clinical Medicine 69(Suppl 8):570–574, 2011.

    PubMed  Google Scholar 

  175. Mills, S., Cain, J., Purandare, N., and Jackson, A., Biomarkers of cerebrovascular disease in dementia. Br. J. Radiol. 80(2):S128–S145, 2007.

    PubMed  Google Scholar 

  176. Liu, M., Zhang, D., and Shen, D., Relationship induced multi-template learning for diagnosis of alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6):1463–1474, 2016.

    PubMed  PubMed Central  Google Scholar 

  177. Kurth, J., Sakretz, M., Teipel, S., and Krause, B. J., Molecular imaging of dementia. Geriatric Mental Health Care 1(3):56–62, 2013.

    Google Scholar 

  178. Valkanova, V., and Ebmeier, K. P., Neuroimaging in dementia. Maturitas 79(2):202–208, 2014.

    PubMed  Google Scholar 

  179. Niessen, W. J., Mr brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics. Med. Image Anal. 33:107–113, 2016.

    PubMed  Google Scholar 

  180. Henriksen, O. M., Marner, L., and Law, I., Clinical pet/mr imaging in dementia and neuro-oncology. PET Clinics 11(4):441–452, 2016.

    PubMed  Google Scholar 

  181. Kato, T., Inui, Y., Nakamura, A., and Ito, K., Brain fluorodeoxyglucose (fdg) pet in dementia. Ageing Res. Rev. 30:73–84, 2016.

    PubMed  Google Scholar 

  182. Valkanova, V., and Ebmeier, K. P., Neuroimaging in dementia. Maturitas 79(2):202–208, 2014.

    PubMed  Google Scholar 

  183. Ray, P. P., An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access 6:723–737, 2017.

    Google Scholar 

  184. Arab, A., Wojna-Pelczar, A., Khairnar, A., Szabó, N., and Ruda-Kucerova, J., Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain Res. Bull. 139:91–98, 2018.

    PubMed  Google Scholar 

  185. Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, J. L., and Ward, C., The alzheimer’s disease neuroimaging initiative (adni). J. Magn. Reson. Imaging 9(1):101, 2015.

    Google Scholar 

  186. Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., and Buckner, R. L., Open access series of imaging studies (oasis): Crosssectional mri data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9):1498–1507, 2007.

    PubMed  Google Scholar 

  187. Villemagne, V. L., Aibl (australian imaging, biomarkers and lifestyle) flagship study of aging. Alzheimers Dement. 5(4):P1–P2, 2009.

    Google Scholar 

  188. Caddementia: A standardized evaluation framework for computer-aided diagnosis of dementia based on structural MRI. https://caddementia.grand-challenge.org/Home/, Accessed: 2018-05-26.

  189. Bhuvaneshwari, B and Kavitha A., Investigations on the brain connectivity patterns in progression of alzheimer’s disease using functional mr imaging and graph theoretical measures. in 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), , 2017, pp. 151–160.

  190. Ray, P. P., Dash, D., and De, D., A Systematic Review of Wearable Systems for Cancer Detection: Current State and Challenges. J. Med. Syst. 41:180, 2017.

    PubMed  Google Scholar 

  191. Sandhya, C., Vidhusha, S., Gayathri, R. S., Sneha Priya, B., and Kavitha, A., Assessment of functional connectivity in autistic brain FMRI. In 2015 IEEE 14th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), 2015, pp. 169–174.

  192. Ray, P. P., Internet of Things for Smart Agriculture: Technologies, Practices and Future Road Map. Journal of Ambient Intelligence and Smart Environments, IOS Press 9:395–420, 2017.

    Google Scholar 

  193. Anandh, K. R., Sujatha, C. M., and Ramakrishnan, S., Analysis of ventricles in alzheimer mr images using coherence enhancing diffusion filter and level set method. In 2014 International Conference on Informatics, Electronics Vision (ICIEV), 2014, pp. 1–4.

  194. Cajanus, A., Hall, A., Koikkalainen, J., Solje, E., Tolonen, A., Urhemaa, T., Liu, Y., Haanpää, R. M., Hartikainen, P., Helisalmi, S., Korhonen, V., Rueckert, D., Hasselbalch, S., Waldemar, G., Mecocci, P., Vanninen, R., van Gils, M., Soininen, H., Lötjöonen, J., and Remes, A. M., Automatic mri quantifying methods in behavioral-variant frontotemporal dementia diagnosis. Dementia and Geriatric Cognitive Disorders Extra 8(1):51–59, 2018.

    PubMed  PubMed Central  Google Scholar 

  195. Ray, P. P., Internet of Things based Approximation of Sun Radiative-Evapotranspiration (ET0) Models. Journal of Agrometeorology 20(2):171–173, 2018.

    Google Scholar 

  196. Ray, P. P., Continuous Glucose Monitoring: A Review of Sensor Systems and Prospects. Sens. Rev. 38(4):420–437.

  197. Goujon, A., Mejdoubi, M., Purcell, Y., Banydeen, R., Colombani, S., and Arrigo, A., Can mri water apparent diffusion coefficient (adc) value discriminate between idiopathic normal pressure hydrocephalus, alzheimer’s disease and subcortical vascular dementia? Journal of Neuroradiology. Journal de Neuroradiologie 45(1):15–22, 2018.

    PubMed  Google Scholar 

  198. Joki, H., Higashiyama, Y., Nakae, Y., Kugimoto, C., Doi, H., Kimura, K., Kishida, H., Ueda, N., Nakano, T., Takahashi, T., Koyano, S., Takeuchi, H., and Tanaka, F., White matter hyperintensities on mri in dementia with lewy bodies, parkinson’s disease with dementia, and alzheimer’s disease. J. Neurol. Sci. 385:99–104, 2018.

    PubMed  Google Scholar 

  199. Ray, P. P., Dash, D., and De, D., Analysis and Monitoring of IoT Assisted Human Physiological Galvanic Skin Response Factor for Smart E-Healthcare. Sens. Rev., Emerald Publishing, 2019. https://doi.org/10.1108/SR-07-2018-0181.

    Google Scholar 

  200. Islam, A. J., Ahammad, K. T., Barua, B., Alam, S. S., and Biswas, A., A new approach of brain mri analysis for identifying creutzfeldtjakob disease (cjd). In 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), 2017, pp. 1–5.

  201. Majumder, P., Ray, P. P., Ghosh, S., and Dey, S. K., Potential Effect of Tobacco Consumption Through Smoking and Chewing Tobacco on IL1beta Protein Expression in Chronic Periodontitis Patients: In Silico Molecular Docking Study. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019. https://doi.org/10.1109/TCBB.2019.2894737.

  202. Huang, W., Zeng, S., Li, J., and Chen, G., A new image-based immersive tool for dementia diagnosis using pairwise ranking and learning. Multimed. Tools Appl. 75(9):5359–5376, 2016.

    Google Scholar 

  203. Ray, P. P., Dash, D., and De, D., Internet of Things-based Real-Time Model Study on e-Healthcare: Device, Message Service and Dew Computing. Comput. Netw., Elsevier 149:226–239, 2019.

    Google Scholar 

  204. Steketee, R. M. E., Bron, E. E., Meijboom, R., Houston, G. C., Klein, S., Mutsaerts, H. J. M. M., Mendez Orellana, C. P., de Jong, F. J., van Swieten, J. C., van der Lugt, A., and Smits, M., Early-stage differentiation between presenile alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur. Radiol. 26(1):244–253, 2016.

    PubMed  Google Scholar 

  205. Wierenga, C. E., Hays, C. C., and Zlatar, Z. Z., Cerebral blood flow measured by arterial spin labeling mri as a preclinical marker of alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 42(Suppl4):S411–S419, 2014.

    PubMed  Google Scholar 

  206. Ray, P. P., Dash, D., and De, D., Approximation of Fruit Ripening Quality Index for IoT based Assistive e-Healthcare. Microsystem Technologies, Springer, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Ray.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mobile & Wireless Health

Appendix 1

Appendix 1

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P.P., Dash, D. & De, D. A Systematic Review and Implementation of IoT-Based Pervasive Sensor-Enabled Tracking System for Dementia Patients. J Med Syst 43, 287 (2019). https://doi.org/10.1007/s10916-019-1417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1417-z

Keywords

Navigation