Skip to main content

Advertisement

Log in

Machine Learning for Predicting Cognitive Diseases: Methods, Data Sources and Risk Factors

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Machine learning and data mining approaches are being successfully applied to different fields of life sciences for the past 20 years. Medicine is one of the most suitable application domains for these techniques since they help model diagnostic information based on causal and/or statistical data and therefore reveal hidden dependencies between symptoms and illnesses. In this paper we give a detailed overview of the recent machine learning research and its applications for predicting cognitive diseases, especially the Alzheimer’s disease, mild cognitive impairment and the Parkinson’s disease. We survey different state-of-the-art methodological approaches, data sources and public data, and provide their comparative analysis. We conclude by identifying the open problems within the field that include an early detection of the cognitive diseases and inclusion of machine learning tools into diagnostic practice and therapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The addneuromed study. https://www.synapse.org/#!Synapse:syn2790911/wiki/235387

  2. Alzheimers disease neuroimaging initiative (ADNI) database. http://adni.loni.usc.edu

  3. Challenge on computer-aided diagnosis of dementia based on structural MRI data. http://caddementia.grand-challenge.org/home

  4. Open access series of imaging studies (OASIS) database. http://www.oasis-brains.org

  5. Agrell, B., and Dehlin, O.: The clock-drawing test. Age and ageing 27(3), 399–404 (1998)

    Google Scholar 

  6. Aha, D.W., Kibler, D., and Albert, M.K., Instance-based learning algorithms. Mach. Learn. 6(1):37–66, 1991.

    Google Scholar 

  7. Beekly, D.L., Ramos, E.M., Lee, W.W., Deitrich, W.D., Jacka, M.E., Wu, J., Hubbard, J.L., Koepsell, T.D., Morris, J.C., Kukull, W.A., et al., The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis. Assoc. Disord. 21(3):249–258, 2007.

    PubMed  Google Scholar 

  8. Beekly, D.L., Ramos, E.M., Van Belle, G., Deitrich, W., Clark, A.D., Jacka, M.E., Kukull, W.A., et al., The National Alzheimer’s Coordinating Center (NACC) database: an Alzheimer disease database. Alzheimer Dis. Assoc. Disord. 18(4):270–277, 2004.

    PubMed  Google Scholar 

  9. Bennasar, M., Setchi, R., Hicks, Y., and Bayer, A.: Cascade classifcation for diagnosing dementia. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), IEEE, pp. 2535–2540, 2014.

  10. Birvinskas, D., Jusas, V., Martisius, I., and Damasevicius, R., Fast DCT algorithms for EEG data compression in embedded systems. Comput. Sci. Info. Syst. 12(1):49–62, 2015.

    Google Scholar 

  11. Burge, J., Clark, V.P., Lane, T., Link, H., and Qiu, S.: Bayesian classification of FMRI data: Evidence for altered neural networks in dementia. University of New Mexico, Tech. Rep TR-CS-2004-28, 2004

  12. Buza, K., and Varga, N.Á., Parkinsonet: estimation of updrs score using hubness-aware feedforward neural networks. Appl. Artif. Intell. 30(6):541–555, 2016.

    Google Scholar 

  13. Challis, E., Hurley, P., Serra, L., Bozzali, M., Oliver, S., and Cercignani, M., Gaussian process classification of alzheimer’s disease and mild cognitive impairment from resting-state fmri. NeuroImage 112:232–243, 2015.

    PubMed  Google Scholar 

  14. Chan, K.C.: A statistical technique for extracting classificatory knowledge from databases. Knowledge discovery in databases, pp. 107–123, 1991

  15. Chen, R., and Herskovits, E.H., Machine-learning techniques for building a diagnostic model for very mild dementia. Neuroimage 52(1):234–244, 2010.

    PubMed  PubMed Central  Google Scholar 

  16. Cho, Y., Seong, J.K., Jeong, Y., Shin, S.Y., Initiative, A.D.N., et al., Individual subject classification for alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59(3):2217–2230 , 2012.

    PubMed  Google Scholar 

  17. Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., Initiative, A.D.N., et al., Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1):59–70, 2012.

    PubMed  Google Scholar 

  18. Chupin, M., Gėrardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehėricy, S., Benali, H., Garnero, L., and Colliot, O., Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6):579–587, 2009.

    PubMed  PubMed Central  Google Scholar 

  19. Chupin, M., Hammers, A., Liu, R.S., Colliot, O., Burdett, J., Bardinet, E., Duncan, J.S., Garnero, L., and Lemieux, L., Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. Neuroimage 46(3):749–761, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Colliot, O., Chételat, G., Chupin, M., Desgranges, B., Magnin, B., Benali, H., Dubois, B., Garnero, L., Eustache, F., and Lehėricy, S., Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248(1):194–201, 2008.

    PubMed  Google Scholar 

  21. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O., Initiative, A.D.N., et al., Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781, 2011.

    PubMed  Google Scholar 

  22. Datta, P., Shankle, W.R., and Pazzani, M.: Applying machine learning to an alzheimer’s database. In: Artificial Intelligence in Medicine: AAAI-96 Spring Symposium, pp. 26–30, 1996.

  23. Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L., et al., Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 132(8):2048–2057, 2009.

    PubMed  PubMed Central  Google Scholar 

  24. Doecke, J.D., Laws, S.M., Faux, N.G., Wilson, W., Burnham, S.C., Lam, C.P., Mondal, A., Bedo, J., Bush, A.I., Brown, B., et al., Blood-based protein biomarkers for diagnosis of alzheimer disease. Arch. Neurol. 69(10):1318–1325, 2012.

    PubMed  PubMed Central  Google Scholar 

  25. DUDA/HART: Pattern classification and scene analysis. John Wiley, 1973

  26. Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., Meindl, T., Pievani, M., Bokde, A.L., Fellgiebel, A., et al., Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PloS One 8(5): e64925, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellis, K.A., Bush, A.I., Darby, D., De Fazio, D., Foster, J., Hudson, P., Lautenschlager, N.T., Lenzo, N., Martins, R.N., Maruff, P., et al., The australian imaging, biomarkers and lifestyle (aibl) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of alzheimer’s disease. Int. Psychogeriatr. 21(4):672–687, 2009.

    PubMed  Google Scholar 

  28. Ewers, M., Walsh, C., Trojanowski, J.Q., Shaw, L.M., Petersen, R.C., Jack, C.R., Feldman, H.H., Bokde, A.L., Alexander, G.E., Scheltens, P., et al., Prediction of conversion from mild cognitive impairment to alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Aging 33(7):1203–1214, 2012.

    CAS  PubMed  Google Scholar 

  29. Fillenbaum, G.G., Heyman, A., Wilkinson, W.E., and Haynes, C.S., Comparison of two screening tests in Alzheimer’s disease: The correlation and reliability of the mini-mental state examination and the modified blessed test. Arch. Neurol. 44(9):924–927, 1987.

    CAS  PubMed  Google Scholar 

  30. Folstein, M.F., Folstein, S.E., and Mchugh, P.R., “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3):189–198, 1975.

    CAS  PubMed  Google Scholar 

  31. Galili, T., Mitelpunkt, A., Shachar, N., Marcus-Kalish, M., and Benjamini, Y.: Categorize, cluster, and classify: a 3-c strategy for scientific discovery in the medical informatics platform of the human brain project. In: International Conference on Discovery Science, pp. 73–86. Springer, 2014.

  32. Garrard, P., Rentoumi, V., Gesierich, B., Miller, B., and Gorno-Tempini, M.L., Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse. Cortex 55:122–129, 2014.

    PubMed  Google Scholar 

  33. Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., Dubois, B., Lehéricy, S., Garnero, L., et al., Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47 (4):1476–1486, 2009.

    PubMed  PubMed Central  Google Scholar 

  34. Gomar, J.J., Bobes-Bascaran, M.T., Conejero-Goldberg, C., Davies, P., Goldberg, T.E., Initiative, A.D.N., et al., Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to alzheimer disease in patients in the alzheimer’s disease neuroimaging initiative. Arch. Gen. Psychiatr. 68(9):961–969, 2011.

    PubMed  Google Scholar 

  35. Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Initiative, A.D.N., et al., Random forest-based similarity measures for multi-modal classification of alzheimer’s disease. NeuroImage 65: 167–175, 2013.

    PubMed  Google Scholar 

  36. Gray, K.R., Wolz, R., Heckemann, R.A., Aljabar, P., Hammers, A., Rueckert, D., Initiative, A.D.N., et al., Multi-region analysis of longitudinal fdg-pet for the classification of alzheimer’s disease. Neuroimage 60(1):221–229, 2012.

    PubMed  PubMed Central  Google Scholar 

  37. Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M.K., Johnson, S.C., Initiative, A.D.N., et al., Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48(1):138–149, 2009.

    PubMed  PubMed Central  Google Scholar 

  38. Hosseini-Asl, E., Gimel’farb, G.L., and El-Baz, A.: Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv:1607.00556, 2016

  39. Huang, M., Yang, W., Feng, Q., Chen, W., Initiative, A.D.N., et al.: Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease. Scientific reports 7, 2017

  40. Imam, I., Michalski, R., and Kerschberg, L.: Discovering attribute dependence in databases by integrating symbolic learning and statistical analysis techniques. In: Proceeding of the AAAI-93 Workshop on Knowledge Discovery in Databases, Washington DC, 1993.

  41. Ishihara, S., and Force, R.A.A., Ishihara Tests for Colour Blindness. Sydney: Shephard & Newman, 1943.

    Google Scholar 

  42. Jones, D.K., and Leemans, A.: Diffusion tensor imaging. Magnetic Resonance Neuroimaging: Methods and Protocols pp. 127–144, 2011

  43. Joshi, S., Shenoy, P.D., GG, V.S., Venugopal, K., and Patnaik, L., Classification of neurodegenerative disorders based on major risk factors employing machine learning techniques. Int. J. Eng. Technol. 2(4):350, 2010.

    Google Scholar 

  44. Jurica, P., Mattis, S., and Leitten, C.: Dementia Rating Scale-2: DRS-2. Psychological Assessment Resources (2001). https://books.google.si/books?id=c5iKjwEACAAJ

  45. Kippenhan, J.S., Barker, W.W., Pascal, S., Nagel, J.H., and Duara, R.: Evaluation of a neural-network classifier for pet scans of normal and alzheimer’s disease subjects, 1992

  46. Klein, S., Loog, M., van der Lijn, F., den Heijer, T., Hammers, A., de Bruijne, M., van der Lugt, A., Duin, R.P., Breteler, M.M., and Niessen, W.J.: Early diagnosis of dementia based on intersubject whole-brain dissimilarities. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, pp. 249–252, 2010.

  47. Li, J., Wang, Z.J., and McKeown, M.J.: A framework for group analysis of fmri data using dynamic bayesian networks. In: 2007 29Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5991–5994, 2007. https://doi.org/10.1109/IEMBS.2007.4353713

  48. Liu, M., Zhang, D., Shen, D., Initiative, A.D.N., et al., Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60(2):1106–1116, 2012.

    PubMed  PubMed Central  Google Scholar 

  49. Llano, D.A., Devanarayan, V., Simon, A.J., et al., and (ADNI, A. D. N. I., Evaluation Of plasma proteomic data for alzheimer disease state classification and for the prediction of progression from mild cognitive impairment to alzheimer disease. Alzheimer Dis. Assoc. Disord. 27(3):233–243, 2013.

    CAS  Google Scholar 

  50. López, M., Ramírez, J., Górriz, J. M., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R., Padilla, P., Gómez-Río, M., Initiative, A.D.N., et al., Principal component analysis-based techniques and supervised classification schemes for the early detection of alzheimer’s disease. Neurocomputing 74(8):1260–1271, 2011.

    Google Scholar 

  51. Meszlényi, R. J., Buza, K., and Vidnyánszky, Z., Resting state fmri functional connectivity-based classification using a convolutional neural network architecture. Frontiers in Neuroinformatics 11:61, 2017.

    PubMed  PubMed Central  Google Scholar 

  52. Miller, V.A., Erlien, S., and Piersol, J.: Support vector machine classification of dimensionally reduced structural mri images for dementia. arXiv:1406.6568, 2014

  53. Moradi, E., Gaser, C., Huttunen, H., and Tohka, J.: Alzheimerr’s: MRI based dementia classification using semi-supervised learning and domain adaption. pp. 65–73, 2014

  54. Morales, D.A., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., Pagonabarraga, J., Kulisevsky, J., Corcuera-Solano, I., and Delfino, M., Predicting dementia development in Parkinson’s disease using bayesian network classifiers. Psychiatry Res. Neuroimaging 213(2):92–98, 2013.

    Google Scholar 

  55. Morris, J.C., Weintraub, S., Chui, H.C., Cummings, J., DeCarli, C., Ferris, S., Foster, N.L., Galasko, D., Graff-Radford, N., Peskind, E.R., et al.: The uniform data set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers, Vol. 20, 2006

  56. Murphy, K.P.: Dynamic bayesian networks. Probabilistic Graphical Models, M. Jordan 7, 2002

  57. Patil, M., and Yardi, A., MLP Classifier for dementia levels. Int. J. Model. Optim. 2(5):567, 2012.

    Google Scholar 

  58. Payan, A., and Montana, G.: Predicting alzheimer’s disease: a neuroimaging study with 3d convolutional neural networks. arXiv:1502.02506, 2015

  59. Pfeffer, R., Kurosaki, T., Harrah, C., Chance, J., and Filos, S., Measurement of functional activities in older adults in the community. J. Gerontol. 37(3):323–329, 1982.

    CAS  PubMed  Google Scholar 

  60. Polikar, R., Topalis, A., Parikh, D., Green, D., Frymiare, J., Kounios, J., and Clark, C.M., An ensemble based data fusion approach for early diagnosis of alzheimer’s disease. Inf. Fusion 9(1):83–95, 2008.

    Google Scholar 

  61. Pritchard, W.S., Duke, D.W., Coburn, K.L., Moore, N.C., Tucker, K.A., Jann, M.W., and Hostetler, R.M., Eeg-based, neural-net predictive classification of alzheimer’s disease versus control subjects is augmented by non-linear eeg measures. Electroencephalogr. Clin. Neurophysiol. 91(2):118–130, 1994.

    CAS  PubMed  Google Scholar 

  62. Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J. F., Duret, V., Puel, M., Berry, I., Fort, J.C., Celsis, P., et al., Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(8):2036–2047, 2009.

    PubMed  PubMed Central  Google Scholar 

  63. Quinlan, J.R.: C4. 5: programs for machine learning. Elsevier, 2014

  64. Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., Friedman, L.F., Galasko, D.R., Jutel, M., Karydas, A., et al., Classification and prediction of clinical alzheimer’s diagnosis based on plasma signaling proteins. Nat. Med. 13(11):1359–1362, 2007.

    CAS  PubMed  Google Scholar 

  65. Roher, A.E., Weiss, N., Kokjohn, T.A., Kuo, Y.M., Kalback, W., Anthony, J., Watson, D., Luehrs, D.C., Sue, L., Walker, D., et al., Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41(37):11080–11090, 2002.

    CAS  PubMed  Google Scholar 

  66. Schmitter-Edgecombe, M., Parsey, C., and Cook, D.J., Cognitive correlates of functional performance in older adults: comparison of self-report, direct observation, and performance-based measures. J. Int. Neuropsychol. Soc. 17(05):853–864, 2011.

    PubMed  PubMed Central  Google Scholar 

  67. Schmitter-Edgecombe, M., Woo, E., and Greeley, D.R., Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology 23(2):168, 2009.

    PubMed  Google Scholar 

  68. Shankle, W.R., Datta, P., Dillencourt, M., and Pazzani, M.: Improving dementia screening tests with machine learning methods. Alzheimer’s Research 2(3), 1996

  69. Shankle, W.R., Mani, S., Pazzani, M.J., and Smyth, P.: Detecting very early stages of dementia from normal aging with machine learning methods. In: Conference on Artificial Intelligence in Medicine in Europe, pp. 71–85. Springer, 1997.

  70. Shanklea, W., Mani, S., Dick, M.B., and Pazzani, M.J.: Simple models for estimating dementia severity using machine learning. Studies in health technology and informatics (1) 472–476 , 1998

  71. Suk, H.I., Lee, S.W., Shen, D., Initiative, A.D.N., et al., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101:569–582, 2014.

    PubMed  PubMed Central  Google Scholar 

  72. Szenkovits, A., Meszlényi, R., Buza, K., Gaskó, N., Lung, R.I., and Suciu, M.: Feature selection with a genetic algorithm for classification of brain imaging data. In: Advances in Feature Selection for Data and Pattern Recognition, pp. 185–202. Springer, 2018.

  73. Tierney, M., Szalai, J., Snow, W., Fisher, R., Nores, A., Nadon, G., Dunn, E., and George-Hyslop, P.S., Prediction of probable alzheimer’s disease in memory-impaired patients a prospective longitudinal study. Neurology 46(3):661–665, 1996.

    CAS  PubMed  Google Scholar 

  74. Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., Cummings, J., DeCarli, C., Foster, N.L., Galasko, D., et al., The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychological test battery. Alzheimer Dis. Assoc. Disord. 23(2):91, 2009.

    PubMed  PubMed Central  Google Scholar 

  75. Williams, J.A., Weakley, A., Cook, D.J., and Schmitter-Edgecombe, M.: Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. In: Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

  76. Wu, X., Zhu, X., Wu, G.Q., and Ding, W., Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1):97–107, 2014.

    Google Scholar 

  77. Zaffalon, M.: Statistical inference of the naive credal classifier. In: ISIPTA, Vol. 1, pp. 384–393, 2001.

  78. Zaffalon, M., The naive credal classifier. J. Stat. Plan. Infer. 105(1):5–21, 2002.

    Google Scholar 

  79. Zaffalon, M., Wesnes, K., and Petrini, O., Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artif. Intell. Med. 29(1):61–79, 2003.

    PubMed  Google Scholar 

  80. Zhang, D., Shen, D., Initiative, A.D.N., et al., Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease. NeuroImage 59(2):895–907, 2012.

    PubMed  Google Scholar 

  81. Zhang, Y., Dong, Z., Phillips, P., Wang, S., Ji, G., Yang, J., and Yuan, T.F., Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9:66, 2015.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the bilateral project between Slovenia and Serbia: BI-RS/16-17-047, “Intelligent computer techniques for improving medical detection, analysis and explanation of human cognition and behavior disorders” between the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Slovenian Research Agency. B. Bratić, V. Kurbalija and M. Ivanović also thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for additional support through project no. OI174023, “Intelligent techniques and their integration into wide-spectrum decision support”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brankica Bratić.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bratić, B., Kurbalija, V., Ivanović, M. et al. Machine Learning for Predicting Cognitive Diseases: Methods, Data Sources and Risk Factors. J Med Syst 42, 243 (2018). https://doi.org/10.1007/s10916-018-1071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1071-x

Keywords

Navigation