Skip to main content
Log in

The Gradient Descent Method for the Convexification to Solve Boundary Value Problems of Quasi-Linear PDEs and a Coefficient Inverse Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the global convergence of the gradient descent method of the minimization of strictly convex functionals on an open and bounded set of a Hilbert space. Such results are unknown for this type of sets, unlike the case of the entire Hilbert space. Then, we use our result to establish a general framework to numerically solve boundary value problems for quasi-linear partial differential equations with noisy Cauchy data. The procedure involves the use of Carleman weight functions to convexify a cost functional arising from the given boundary value problem and thus to ensure the convergence of the gradient descent method above. We prove the global convergence of the method as the noise tends to 0. The convergence rate is Lipschitz. Next, we apply this method to solve a highly nonlinear and severely ill-posed coefficient inverse problem, which is the so-called back scattering inverse problem. This problem has many real-world applications. Numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data is generated computationally by solving a number of Partial Differential Equations. It is available from the corresponding author on reasonable request.

References

  1. Alifanov, O.M.: Inverse Heat Conduction Problems. Springer, New York (1994)

    Book  Google Scholar 

  2. Alifanov, O.M., Artukhin, A.E., Rumyantcev, S.V.: Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. Begell House, New York (1995)

    Google Scholar 

  3. Bakushinskii, A.B., Klibanov, M.V., Koshev, N.A.: Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs. Nonlinear Anal. Real World Appl. 34, 201–224 (2017)

    Article  MathSciNet  Google Scholar 

  4. Beilina, L., Klibanov, M.V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York (2012)

    Book  Google Scholar 

  5. Bukhgeim, A.L., Klibanov, M.V.: Uniqueness in the large of a class of multidimensional inverse problems. Sov. Math. Dokl. 17, 244–247 (1981)

    Google Scholar 

  6. Colton, David, Kress, Rainer: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, 3rd edn. Springer, New York (2013)

    Book  Google Scholar 

  7. Isakov, V.: Inverse Problems for Partial Differential Equations, 3rd edn. Springer, New York (2017)

    Book  Google Scholar 

  8. Khoa, V.A., Bidney, G.W., Klibanov, M.V., Nguyen, L.H., Nguyen, L., Sullivan, A., Astratov, V.N.: Convexification and experimental data for a 3D inverse scattering problem with the moving point source. Inverse Probl. 36, 085007 (2020)

    Article  MathSciNet  Google Scholar 

  9. Khoa, V.A., Bidney, G.W., Klibanov, M.V., Nguyen, L.H., Nguyen, L., Sullivan, A., Astratov, V.N.: An inverse problem of a simultaneous reconstruction of the dielectric constant and conductivity from experimental backscattering data. Inverse Probl. Sci. Eng. 29(5), 712–735 (2021)

    Article  MathSciNet  Google Scholar 

  10. Khoa, V.A., Klibanov, M.V., Nguyen, L.H.: Convexification for a 3D inverse scattering problem with the moving point source. SIAM J. Imaging Sci. 13(2), 871–904 (2020)

    Article  MathSciNet  Google Scholar 

  11. Klibanov, M.V.: Inverse problems and Carleman estimates. Inverse Probl. 8, 575–596 (1992)

    Article  MathSciNet  Google Scholar 

  12. Klibanov, M.V.: Global convexity in a three-dimensional inverse acoustic problem. SIAM J. Math. Anal. 28, 1371–1388 (1997)

    Article  MathSciNet  Google Scholar 

  13. Klibanov, M.V.: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill Posed Probl. 21, 477–560 (2013)

    Article  MathSciNet  Google Scholar 

  14. Klibanov, M.V.: Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs. Inverse Probl. 31, 125007 (2015)

    Article  MathSciNet  Google Scholar 

  15. Klibanov, M.V.: Convexification of restricted Dirichlet to Neumann map. J. Inverse Ill Posed Probl. 25(5), 669–685 (2017)

    Article  MathSciNet  Google Scholar 

  16. Klibanov, M.V., Ioussoupova, O.V.: Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem. SIAM J. Math. Anal. 26, 147–179 (1995)

    Article  MathSciNet  Google Scholar 

  17. Klibanov, M.V., Khoa, V.A., Smirnov, A.V., Nguyen, L.H., Bidney, G.W., Nguyen, L., Sullivan, A., Astratov, V.N.: Convexification inversion method for nonlinear SAR imaging with experimentally collected data. J. Appl. Ind. Math. 15, 413–436 (2021)

    Article  MathSciNet  Google Scholar 

  18. Klibanov, M.V., Li, J.: Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data. De Gruyter, Berlin (2021)

    Book  Google Scholar 

  19. Klibanov, M.V., Li, J., Zhang, W.: Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Probl. 35, 035005 (2019)

    Article  MathSciNet  Google Scholar 

  20. Klibanov, M.V., Li, Z., Zhang, W.: Convexification for the inversion of a time dependent wave front in a heterogeneous medium. SIAM J. Appl. Math. 79, 1722–1747 (2019)

    Article  MathSciNet  Google Scholar 

  21. Klibanov, M.V., Romanov, V.G.: Reconstruction procedures for two inverse scattering problems without the phase information. SIAM J. Appl. Math. 76, 178–196 (2016)

    Article  MathSciNet  Google Scholar 

  22. Klibanov, M.V., Timonov, A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Inverse and Ill-Posed Problems Series. VSP, Utrecht (2004)

    MATH  Google Scholar 

  23. Kuzhuget, A., Klibanov, M.V.: Global convergence for a 1-D inverse problem with application to imaging of land mines. Appl. Anal. 89(1), 125–157 (2010)

    Article  MathSciNet  Google Scholar 

  24. Le, T.T., Nguyen, L.H.: A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data. J. Inverse Ill Posed Probl. (2020). https://doi.org/10.1515/jiip-2020-0028

    Article  Google Scholar 

  25. Lechleiter, A., Nguyen, D.-L.: A trigonometric Galerkin method for volume integral equations arising in TM grating scattering. Adv. Comput. Math. 40, 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  26. Nguyen, D.L.: A volume integral equation method for periodic scattering problems for anisotropic Maxwell’s equations. Appl. Numer. Math. 98, 59–78 (2015)

    Article  MathSciNet  Google Scholar 

  27. Nguyen, L.H.: An inverse space-dependent source problem for hyperbolic equations and the Lipschitz-like convergence of the quasi-reversibility method. Inverse Probl. 35, 035007 (2019)

    Article  MathSciNet  Google Scholar 

  28. Nguyen, L.H.: A new algorithm to determine the creation or depletion term of parabolic equations from boundary measurements. Comput. Math. Appl. 80, 2135–2149 (2020)

    Article  MathSciNet  Google Scholar 

  29. Schubert, H., Kuznetsov, A.: Detection and Disposal of Improvised Explosives. Springer, Dordrecht (2006)

    Book  Google Scholar 

  30. Triggiani, R., Yao, P.F.: Carleman estimates with no lower order terms for general Riemannian wave equations. Global uniqueness and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002)

    Article  MathSciNet  Google Scholar 

  31. Truong, T., Nguyen, D.-L., Klibanov, M.V.: Convexification numerical algorithm for a 2D inverse scattering problem with backscatter data. Inverse Probl. Sci. Eng. 29, 2656–2675 (2021)

    Article  MathSciNet  Google Scholar 

  32. Weatherall, J.C., Barber, J., Smith, B.T.: Identifying explosives by dielectric properties obtained through wide-band millimeter-wave illumination. In: Passive and Active Millimeter-Wave Imaging XVIII. Proc. SPIE 9462 (2015)

  33. Yamamoto, M.: Carleman estimates for parabolic equations. Top. Rev. Inverse Probl. 25, 123013 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. Michael V. Klibanov for many fruitful discussions.

Funding

The work is supported in part by US Army Research Laboratory and US Army Research Office grant W911NF-19-1-0044 and by funds provided by the Faculty Research Grant program at UNC Charlotte, Fund No. 111272.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript equally.

Corresponding author

Correspondence to Loc H. Nguyen.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.T., Nguyen, L.H. The Gradient Descent Method for the Convexification to Solve Boundary Value Problems of Quasi-Linear PDEs and a Coefficient Inverse Problem. J Sci Comput 91, 74 (2022). https://doi.org/10.1007/s10915-022-01846-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01846-3

Keywords

Mathematics Subject Classification

Navigation