Skip to main content
Log in

Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Hoboken, NJ (2008)

    Book  MATH  Google Scholar 

  2. Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD equations. J. Comput. Phys. 238, 255–280 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \({P}^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25(3), 337–361 (1989)

    MathSciNet  Google Scholar 

  4. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantinescu, E.M.: Multirate timestepping methods. J. Sci. Comput. 33, 239–278 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dawson, C., Trahan, C.J., Kubatko, E.J., Westerink, J.J.: A parallel local timestepping Runge–Kutta discontinuous Galerkin method with applications to coastal ocean modeling. Comput. Methods Appl. Mech. Eng. 259(1), 154–165 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottlieb, S., Ketcheson, D., Shu, C.W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  9. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gottlieb, S., Shu, C.W.: Strong stability preserving properties of Runge–Kutta time discretization methods for linear constant coefficient operators. J. Sci. Comput. 18(1), 83–109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008). http://stanford.edu/boyd/~graph_dcp.html

  13. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta (2012). http://cvxr.com/cvx

  14. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jeltsch, R., Nevanlinna, O.: Largest disk of stability of explicit Runge–Kutta methods. BIT Numer. Math. 18, 500–502 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ketcheson, D.I., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kinnmark, I.P., Gray, W.G.: One step integration methods with maximum stability regions. Math. Comput. Simul. 26, 87–92 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 198, 1766–1774 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kubatko, E.J., Westerink, J.J., Dawson, C.: Semidiscrete discontinuous Galerkin methods and stage exceeding order strong stability preserving Runge–Kutta time discretizations. J. Comput. Phys. 222, 832–848 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mirabito, C., Dawson, C., Kubatko, E.J., Westerink, J.J., Bunya, S.: Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes. Comput. Methods Appl. Mech. Eng. 200, 189–207 (2011)

    Article  MathSciNet  Google Scholar 

  23. Parsani, M., Ketcheson, D.I.: Design of optimal explicit linearly stable strong stability preserving Runge–Kutta schemes for the spectral difference method. In : International Conference on Spectral and High Order Methods (2012)

  24. Parsani, M., Ketcheson, D.I., Deconinck, W.: Optimized explicit Runge–Kutta schemes for the spectral difference method applied to wave propagation problems. SIAM J. Sci. Comput. 35(2), A957–A986 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Reddy, S.C., Trefethen, L.N.: Stability of the method of lines. Numerische Mathematik 62, 235–267 (1992)

    Google Scholar 

  26. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75, 183–207 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62, 125–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sun, T., Qiu, J.: LWDG method for a multi-class traffic flow model on an inhomogeneous highway. Adv. Appl. Math. Mech. 1(3), 438–450 (2009)

    MathSciNet  Google Scholar 

  30. Toulorge, T., Desmet, W.: Optimal Runge–Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems. J. Comput. Phys. 231(4), 2067–2091 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217, 139–152 (2012)

    Article  MathSciNet  Google Scholar 

  32. van der Houwen, P.: Explicit Runge–Kutta formulas with increased stability boundaries. Numerische Mathematik 20, 149–164 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vichnevetsky, R.: New stability theorems concerning one-step numerical methods for ordinary differential equations. Math. Comput. Simul. 25, 199–205 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Williamson, J.H.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xing, Y., Shu, C.W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2010)

    Article  MathSciNet  Google Scholar 

  36. Xing, Y., Zhang, X., Shu, C.W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The first and second author acknowledge support by National Science Foundation Grants DMS-0915118 and DMS-1217218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan J. Kubatko.

Appendix: Shu–Osher Form Coefficients of the New Runge–Kutta Methods

Appendix: Shu–Osher Form Coefficients of the New Runge–Kutta Methods

See Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21.

Table 7 SSPRK(3,2)
Table 8 SSPRK(4,2)
Table 9 SSPRK(5,2)
Table 10 SSPRK(6,2)
Table 11 SSPRK(7,2)
Table 12 SSPRK(8,2)
Table 13 SSPRK(4,3)
Table 14 SSPRK(5,3)
Table 15 SSPRK(6,3)
Table 16 SSPRK(7,3)
Table 17 SSPRK(8,3)
Table 18 SSPRK(5,4)
Table 19 SSPRK(6,4)
Table 20 SSPRK(7,4)
Table 21 SSPRK(8,4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubatko, E.J., Yeager, B.A. & Ketcheson, D.I. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods. J Sci Comput 60, 313–344 (2014). https://doi.org/10.1007/s10915-013-9796-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9796-7

Keywords

Navigation