Skip to main content
Log in

Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Coupling wave and circulation models is vital in order to define shelf, nearshore and inland hydrodynamics during a hurricane. The intricacies of the inland floodplain domain, level of required mesh resolution and physics make these complex computations very cycle-intensive. Nonetheless, fast wall-clock times are important, especially when forecasting an incoming hurricane.

We examine the performance of the unstructured-mesh, SWAN+ADCIRC wave and circulation model applied to a high-resolution, 5M-vertex, finite-element SL16 mesh of the Gulf of Mexico and Louisiana. This multi-process, multi-scale modeling system has been integrated by utilizing inter-model communication that is intra-core. The modeling system is validated through hindcasts of Hurricanes Katrina and Rita (2005), Gustav and Ike (2008) and comprehensive comparisons to wave and water level measurements throughout the region. The performance is tested on a variety of platforms, via the examination of output file requirements and management, and the establishment of wall-clock times and scalability using up to 9,216 cores. Hindcasts of waves and storm surge can be computed efficiently, by solving for as many as 2.3⋅1012 unknowns per day of simulation, in as little as 10 minutes of wall-clock time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, J.H., Westerink, J.J., Hervouet, J.M.: Similarities between the wave equation and the quasi-bubble solutions to the shallow water equations. Int. J. Numer. Methods Fluids 45, 689–714 (2004)

    Article  MATH  Google Scholar 

  2. Battjes, J.A., Janssen, J.P.F.M.: Energy loss and set-up due to breaking of random waves. In: Proceedings of the 16th International Conference on Coastal Engineering, pp. 569–587. ASCE, Reston (1978)

    Google Scholar 

  3. Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res. 104, 7649–7666 (1999)

    Article  Google Scholar 

  4. Bunya, S., Dietrich, J.C., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.E., Resio, D.T., Luettich, R.A. Jr., Dawson, C.N., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., Roberts, H.J.: A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for Southern Louisiana and Mississippi: Part I—Model development and validation. Mon. Weather Rev. 138(2), 345–377 (2010)

    Article  Google Scholar 

  5. Cardone, V.J., Cox, A.T.: Tropical cyclone wind forcing for surge models: critical issues and sensitivities. In: First JCOMM International Storm Surge Symposium. Seoul, Korea, October, 2007. Submitted to Nat. Hazards (2007). doi:10.1007/s11069-009-9369-0

  6. Cox, A.T., Greenwood, J.A., Cardone, V.J., Swail, V.R.: An interactive objective kinematic analysis system. In: Fourth International Workshop on Wave Hindcasting and Forecasting, Atmospheric Environment Service, Banff, Alberta, Canada, pp. 109–118 (1995)

    Google Scholar 

  7. Coastal Wetlands Planning: Protection and Restoration Act, http://www.lacoast.gov

  8. Dawson, C.N., Westerink, J.J., Feyen, J.C., Pothina, D.: Continuous, discontinuous and coupled discontinuous-continuous Galerkin finite element methods for the shallow water equations. Int. J. Numer. Methods Fluids 52, 63–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dietrich, J.C., Kolar, R.L., Luettich, R.A. Jr.: Assessment of ADCIRC’s wetting and drying algorithm. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Proceedings of the XV International Conference on Computational Methods in Water Resources (CMWR), vol. 2, pp. 1767–1778 (2004)

    Chapter  Google Scholar 

  10. Dietrich, J.C., Kolar, R.L., Westerink, J.J.: Refinements in continuous Galerkin wetting and drying algorithms. In: Proceedings of the Ninth International Conference on Estuarine and Coastal Modeling, pp. 637–656 (2006)

    Google Scholar 

  11. Dietrich, J.C., Bunya, S., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.E., Resio, D.T., Luettich, R.A. Jr., Dawson, C.N., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., Roberts, H.J.: A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for Southern Louisiana and Mississippi: Part II—Synoptic description and analyses of Hurricanes Katrina and Rita. Mon. Weather Rev. 138, 378–404 (2010)

    Article  Google Scholar 

  12. Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C.N., Luettich, R.A. Jr., Jensen, R.E., Smith, J.M., Stelling, G.S., Stone, G.W.: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 58, 45–65 (2011)

    Article  Google Scholar 

  13. Dietrich, J.C., Westerink, J.J., Kennedy, A.B., Smith, J.M., Jensen, R.E., Zijlema, M., Holthuijsen, L.H., Dawson, C.N., Luettich, R.A. Jr., Powell, M.D., Cardone, V.J., Cox, A.T., Stone, G.W., Pourtaheri, H., Hope, M.E., Tanaka, S., Westerink, L.G., Westerink, H.J., Cobell, Z.: Hurricane Gustav (2008) waves, storm surge and currents: hindcast and synoptic analysis in Southern Louisiana. Mon. Weather Rev. (2011, in press). doi:10.1175/2011MWR3611.1

  14. Ebersole, B.A., Westerink, J.J., Resio, D.T., Dean, R.G.: Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System, Vol. IV—The Storm. Final Report of the Interagency Performance Evaluation Task Force. U.S. Army Corps of Engineers, Washington (2007)

    Google Scholar 

  15. Federal Emergency Management Agency: Louisiana Hurricane Ike coastal high water mark data collection. FEMA-1792-DR-Louisiana, Draft Report, February 2009

  16. Hasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P.: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum, Part II: Parameterizations of the nonlinear transfer for application in wave models. J. Phys. Oceanogr. 15(11), 1378–1391 (1985)

    Article  Google Scholar 

  17. Holland, G.J.: An analytical model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212–1218 (1980)

    Article  Google Scholar 

  18. Kennedy, A.B., Gravois, U., Zachry, B., Luettich, R.A. Jr., Whipple, T., Weaver, R., Fleming, J., Chen, Q.J., Avissar, R.: Rapidly installed temporary gauging for waves and surge during Hurricane Gustav. Cont. Shelf Res. 30, 1743–1752 (2010)

    Article  Google Scholar 

  19. Kennedy, A.B., Gravois, U., Zachry, B., Westerink, J.J., Hope, M.E., Dietrich, J.C., Powell, M.D., Cox, A.T., Luettich, R.A. Jr., Dean, R.G.: Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett. (2011, in press). doi:10.1029/2011GL047090

  20. Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C.A.: Aspects of nonlinear simulations using shallow water models based on the wave continuity equations. Comput. Fluids 23(3), 1–24 (1994)

    Article  Google Scholar 

  21. Luettich, R.A. Jr., Westerink, J.J.: An assessment of flooding and drying techniques for use in the ADCIRC hydrodynamic model: implementation and performance in one-dimensional flows. Report for the Department of the Army, Contract Number DACW39-94-M-5869 (1995)

  22. Luettich, R.A. Jr., Westerink, J.J.: Implementation and testing of elemental flooding and drying in the ADCIRC hydrodynamic model. Final Report for the Department of the Army, Contract Number DACW39-94-M-5869 (1995)

  23. Luettich, R.A. Jr., Westerink, J.J.: Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX (2004). http://adcirc.org/adcirc_theory_2004_12_08.pdf

  24. Madsen, O.S., Poon, Y.-K., Graber, H.C.: Spectral wave attenuation by bottom friction: theory. In: Proceedings of the 21st International Conference on Coastal Engineering, pp. 492–504. ASCE, Reston (1988)

    Google Scholar 

  25. McGee, B.D., Goree, B.B., Tollett, R.W., Woodward, B.K., Kress, W.H.: Hurricane Rita Surge Data, Southwestern Louisiana and Southeastern Texas, September to November 2005. U.S. Geological Survey Data Series, vol. 220 (2006)

    Google Scholar 

  26. National Data Buoy Center: http://www.ndbc.noaa.gov

  27. NOAA Tides Currents: http://www.tidesandcurrents.noaa.gov

  28. Powell, M.D., Houston, S., Reinhold, T.: Hurricane Andrew’s landfall in South Florida. Part I: Standardizing measurements for documentation of surface windfields. Weather Forecast. 11, 304–328 (1996)

    Article  Google Scholar 

  29. Powell, M.D., Houston, S., Amat, L., Morrisseau-Leroy, N.: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn. 77–78, 53–64 (1998)

    Article  Google Scholar 

  30. Powell, M.D., Vickery, P.J., Reinhold, T.A.: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283 (2003)

    Article  Google Scholar 

  31. Powell, M.D.: Drag coefficient distribution and wind speed dependence in tropical cyclones. Final Report to the National Oceanic and Atmospheric Administration (NOAA) Joint Hurricane Testbed (JHT) Program (2006)

  32. Powell, M.D., Murillo, S., Dodge, P., Uhlhorn, E., Gamache, J., Cardone, V.J., Cox, A.T., Otero, S., Carrasco, N., Annane, B., St. Fleur, R.: Reconstruction of Hurricane Katrina’s wind field for storm surge and wave hindcasting. Ocean Eng. 37, 26–36 (2008)

    Article  Google Scholar 

  33. Resio, D.T., Westerink, J.J.: Modeling the physics of storm surges. Phys. Today 61(9), 33–38 (2008)

    Article  Google Scholar 

  34. Rogers, W.E., Hwang, P.A., Wang, D.W.: Investigation of wave growth and decay in the SWAN model: three regional-scale applications. J. Phys. Oceanogr. 33, 366–389 (2003)

    Article  Google Scholar 

  35. Smith, J.M., Jensen, R.E., Kennedy, A.B., Dietrich, J.C., Westerink, J.J.: Waves in wetlands: Hurricane Gustav. In: Proceedings of the International Conference on Coastal Engineering 2010, Shanghai, China, vol. 32 (2010). Retrieved from http://journals.tdl.org/ICCE/article/view/1027

    Google Scholar 

  36. Snyder, R.L., Dobson, F.W., Elliott, J.A., Long, R.B.: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 1–59 (1981)

    Article  Google Scholar 

  37. Tanaka, S., Bunya, S., Westerink, J.J., Dawson, C.N., Luettich, R.A. Jr.: Scalability of an unstructured grid continuous Galerkin based hurricane storm surge model. J. Sci. Comput. 46, 329–358 (2011)

    Article  MathSciNet  Google Scholar 

  38. URS: Final coastal and riverine high-water marks collection for Hurricane Katrina in Louisiana. Final Report for the Federal Emergency Management Agency (2006)

  39. URS: Final coastal and riverine high-water marks collection for Hurricane Rita in Louisiana. Final Report for the Federal Emergency Management Agency (2006)

  40. USACE New Orleans District, Personal communication (2009)

  41. Walters, D.J.: Personal communication (2009)

  42. Wave-Current-Surge Information System for Southern Louisiana: http://www.wavcis.lsu.edu

  43. Westerink, J.J., Luettich, R.A. Jr., Feyen, J.C., Atkinson, J.H., Dawson, C.N., Roberts, H.J., Powell, M.D., Dunion, J.P., Kubatko, E.J., Pourtaheri, H.: A basin to channel scale unstructured grid hurricane storm surge model applied to Southern Louisiana. Mon. Weather Rev. 136(3), 833–864 (2008)

    Article  Google Scholar 

  44. Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coast. Eng. 57, 267–277 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, J.C., Tanaka, S., Westerink, J.J. et al. Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge. J Sci Comput 52, 468–497 (2012). https://doi.org/10.1007/s10915-011-9555-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9555-6

Keywords

Navigation