Skip to main content

Advertisement

Log in

The Dorsal Integument of the Southern Long-Nosed Armadillo Dasypus hybridus (Cingulata, Xenarthra), and a Possible Neural Crest Origin of the Osteoderms. Discussing Evolutive Consequences for Amniota

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Osteoderms are present in most tetrapod lineages with considerable lineage-specific variation. It has been hypothesized that osteoderms are a case of “deep homology” in craniates, but the embryonic origin of osteoderms -and other related postcranial exoskeletal elements- is still under debate. Most authors support its mesodermal origin, while others suggest that osteoderms are derived from neural crest scleroblastic cells in sauropsids. The armadillos (Xenarthra, Cingulata) are the only living mammals and the only extant synapsids with osteoderms. Here, we aim to identify skeletogenic neural crest cells in the dorsal skin of armadillos in order to assess if osteoderms have a neuroectodermal origin in mammals, similar to what is observed in sauropsids. For this purpose, skin samples from fetuses and newborn specimens of Dasypus hybridus were processed and the embryological development of osteoderms was characterized using different immunohistochemical markers (HNK-1, PDGFR α, S-100, and C5). For the first time, we report cell populations that were reactive to skeletogenic neural crest markers, indicating an ectomesenchymal origin of the mammalian osteoderms. Our results demonstrate similar molecular expression for mammals as in sauropsids and, therefore, this strongly suggests that osteoderms in both groups would have a homologous embryonic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berman DS, Reisz RR, Bolt JR, Scott D (1995) The cranial anatomy and relationships of the synapsid Varanosaurus (Eupelycosauria, Ophiacodontidae) from the Early Permian of Texas and Oklahoma. Ann Carnegie Mus 64:99–133

    Google Scholar 

  • Betsholtz C, Karlsson L, Lindahl P (2001) Developmental roles of platelet-derived growth factors. BioEssays 23:494–507

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M (1986) Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 115:44–55

    Article  CAS  PubMed  Google Scholar 

  • Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF (2007) Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9:267–277

    Article  CAS  PubMed  Google Scholar 

  • Cebra-Thomas JA, Terrell A, Branyan K, Shah S, Rice R, Gyi L, Yin M, Hu Y, Mangat G, Simonet J, Betters E, Gilbert SF (2013) Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomesenchyme in the plastron. Dev Dyn 242:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Chou DKH, Schachner M, Jungalwala FB (2002) HNK-1 sulfotransferase null mice express glucuronyl glycoconjugates and show normal cerebellar granule neuron migration in vivo and in vitro. J Neurochem 82:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Clark K, Bender G, Murray BP, Panfilio K, Cook S, Davis R, Murnen K, Tuan RS, Gilbert SF (2001) Evidence for the neural crest origin of turtle plastron bones. Genesis 31:111–117

    Article  CAS  PubMed  Google Scholar 

  • Clarkson KS, Sturdgess IC, Molyneux AJ (2001) The usefulness of tyrosinase in the immunohistochemical assessment of melanocytic lesions: a comparison of the novel T311 antibody (anti-tyrosinase) with S-100, HMB45, and A103 (anti-melan-A). J Clin Pathol 54:196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di-Poï N, Milinkovitch MC (2016) The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Sci Adv 2(6):e1600708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erickson CA, Loring JF, Lester SM (1989) Migratory pathways of HNK-1-immunoreactive neural crest cells in the rat embryo. Dev Biol 134:112–118

    Article  CAS  PubMed  Google Scholar 

  • Fernández M (1915) Die Entwicklung der Mulita. La Embriología de la Mulita (Tatusia hybrida Desm.). Rev Mus Plata XXI:519

  • Flamini MA, Portiansky EL, Favaron PO, Martins DS, Ambrósio CE, Mess AM, Miglino MA, Barbeito CG (2011) Chorioallantoic and yolk sac placentation in the plains viscacha (Lagostomus maximus) - a caviomorph rodent with natural polyovulation. Placenta 32:963–968

    Article  CAS  PubMed  Google Scholar 

  • Ford DP, Benson RBJ (2020) The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat Ecol Evol 4(1):57-65

    Article  PubMed  Google Scholar 

  • Gilbert SF, Bender G, Betters E, Yin M, Cebra-Thomas JA (2007) The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integr Comp Biol 47:401–408

    Article  PubMed  Google Scholar 

  • Gillis JA, Alsema EC, Criswell KE (2017) Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proc Natl Acad Sci USA 114:13200–13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg S, Venkatesh A, Martinez J, Dombroski C, Abesamis J, Campbell C, Mccalipp M, de Bellard ME (2020) The development of the trunk neural crest in the turtle Trachemys scripta. Dev Dyn 249(1):125-140

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (2002) The Structure of Evolutionary Theory. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hall BK (2014) Endoskeleton/exo (dermal) skeleton - mesoderm/neural crest: two pair of problems and a shifting paradigm. J Appl Ichthyol 30:608–615

  • Hall BK, Gillis JA (2013) Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 222:19–31

  • Hamlett GWD (1935) Delayed implantation and discontinuous development in the mammals. Q Rev Biol 10:432–447

    Article  Google Scholar 

  • Ho L, Symes K, Yordán C, Gudas LJ, Mercola M (1994) Localization of PDGF A and PDGFRα mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech Dev 48:165–174

    Article  CAS  PubMed  Google Scholar 

  • Hoch RV, Soriano P (2003) Roles of PDGF in animal development. Development 130:4769–4784

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Morita T, Sieber-Blum M (1993) In vitro clonal analysis of mouse neural crest development. Dev Biol 157:517–525

    Article  CAS  PubMed  Google Scholar 

  • Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, Fisher S (2012) Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS ONE 7:e47394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating JN, Donoghue PCJ (2016) Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton. Proc R Soc B Biol Sci 283(1826):20152917

    Article  CAS  Google Scholar 

  • Keating JN, Marquart CL, Donoghue PCJ (2015) Histology of the heterostracan dermal skeleton: insight into the origin of the vertebrate mineralised skeleton: histology of heterostracan dermal skeletons. J Morphol 276:657–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Krmpotic CM, Carlini AA, Galliari FC, Favaron P, Miglino MA, Scarano AC, Barbeito CG (2014) Ontogenetic variation in the stratum granulosum of the epidermis of Chaetophractus vellerosus (Xenarthra, Dasypodidae) in relation to the development of cornified scales. Zoology 117:392–397

    Article  PubMed  Google Scholar 

  • Krmpotic CM, Ciancio MR, Carlini AA, Castro MC, Scarano AC, Barbeito CG (2015) Comparative histology and ontogenetic change in the carapace of armadillos (Mammalia: Dasypodidae). Zoomorphology 134:601–616

    Article  Google Scholar 

  • Krmpotic CM, Galliari FC, Barbeito CG, Carlini AA (2012) Development of the integument of Dasypus hybridus and Chaetophractus vellerosus, and asynchronous events with respect to the postcranium. Mammal Biol 77:314–326

    Article  Google Scholar 

  • Lee RTH, Knapik EW, Thiery JP, Carney TJ (2013a) An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Dev 140:2923–2932

  • Lee RTH, Thiery JP, Carney TJ (2013b) Dermal fin rays and scales derive from mesoderm, not neural crest. Curr Biol 23:R336–R337

  • Lemopoulos A, Montoya-Burgos JI (2020) From scales to armour: scale losses and trunk bony plate gains in ray-finned fishes. BioRxiv https://doi.org/10.1101/2020.09.09.28888617-09-2020

  • Main RP, de Ricqlès A, Horner JR, Padian K (2005) The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs. Paleobiology 31:291–314

    Article  Google Scholar 

  • Mead RA (1993) Embryonic diapause in vertebrates. J Exp Zool 266:629–641

    Article  CAS  PubMed  Google Scholar 

  • Meunier FJ, Huysseune A (1991) The concept of bone tissue in osteichthyes. Neth J Zool 42:445–458

    Article  Google Scholar 

  • Mongera A, Nüsslein-Volhard C (2013) Scales of fish arise from mesoderm. Curr Biol 23:R338–R339

    Article  CAS  PubMed  Google Scholar 

  • Mongera A, Singh AP, Levesque MP, Chen YY, Konstantinidis P, Nüsslein-Volhard C (2013) Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140:916–925

    Article  CAS  PubMed  Google Scholar 

  • Montero R, Autino A (2018) Sistemática y Filogenia de los Vertebrados con énfasis en la fauna argentina. Editorial Independiente, Tucumán

    Google Scholar 

  • Moss ML (1969) Comparative histology of dermal sclerifications in reptiles. Acta Anat 73:510–533

    Article  CAS  PubMed  Google Scholar 

  • Newman HH (1917) The Biology of Twins (Mammals). University of Chicago Press, Chicago

    Book  Google Scholar 

  • Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–724

    Article  CAS  PubMed  Google Scholar 

  • Orr-Urtreger A, Lonai P (1992) Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development 115:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Peters EMJ, Tobin DJ, Botchkareva N, Maurer M, Paus R (2002) Migration of melanoblasts into the developing murine hair follicle is accompanied by transient c-Kit expression. J Histochem Cytochem 50:751–766

    Article  CAS  PubMed  Google Scholar 

  • Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455

    CAS  PubMed  Google Scholar 

  • Rivera-Rivera CJ, Montoya-Burgos JI (2017) Trunk dental tissue evolved independently from underlying dermal bony plates but is associated with surface bones in living odontode-bearing catfish. Proc R Soc B 284:20171831

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadaghiani B, Vielkind JR (1990) Distribution and migration pathways of HNK-1-immunoreactive neural crest cells in teleost fish embryos. Development 110:197–209

    Article  CAS  PubMed  Google Scholar 

  • Sandell M (1990) The evolution of seasonal delayed implantation. Q Rev Biol 65:23–42

    Article  CAS  PubMed  Google Scholar 

  • Schatteman GC, Morrison-Graham K, Van Koppen A, Weston JA, Bowen-Pope DF (1992) Regulation and role of PDGF receptor α-subunit expression during embryogenesis. Development 115:123–131

    Article  CAS  PubMed  Google Scholar 

  • Schultze HP (2018) Hard tissues in fish evolution: history and current issues. Cybium 42(1):29-39

    Google Scholar 

  • Shimada A, Kawanishi T, Kaneko T, Moriyama Y, Kinoshita M, Yokoi H, Suzuki T, Shimada A, Takeda H (2013) Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 4:1639

    Article  PubMed  CAS  Google Scholar 

  • Shubin N, Tabin C, Carroll S (1997) Fossils, genes and the evolution of animal limbs. Nature 388:639–648

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  CAS  PubMed  Google Scholar 

  • Sire JY, Akimenko MA (2004) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol 48:233–247

    Article  CAS  PubMed  Google Scholar 

  • Sire JY, Donoghue PCJ, Vickaryous MK (2009) Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat 214:409–440

    Article  PubMed  PubMed Central  Google Scholar 

  • Sire JY, Huysseune A (2003) Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev 78:219–249

    Article  PubMed  Google Scholar 

  • Smith M, Hickman A, Amanze D, Lumsden A, Thorogood P (1994) Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio. Proc R Soc B Biol Sci 256:137–145

    Article  Google Scholar 

  • Smith MM, Hall BK (1990) Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev 1990(65):277–373

    Article  CAS  PubMed  Google Scholar 

  • Takakura N, Yoshida H, Ogura Y, Kataoka H, Nishikawa S, Nishikawa SI (1997) PDGFRα expression during mouse embryogenesis: immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFRα antibody APA5. J Histochem Cytochem 45:883–893

    Article  CAS  PubMed  Google Scholar 

  • Tucker GC, Aoyama H, Lipinski M, Tursz T, Thiery JP (1984) Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ 14:223–230

    Article  CAS  PubMed  Google Scholar 

  • Vickaryous MK, Hall BK (2006) Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol 267:1273–1283

  • Vickaryous MK, Sire JY (2009) The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat 214 (4):441-464

    Article  PubMed  PubMed Central  Google Scholar 

  • Woudwyk MA, Zanuzzi CN, Nishida F, Gimeno EJ, Soto P, Monteavaro CE, Barbeito CG (2015) Apoptosis and cell proliferation in the mouse model of embryonic death induced by Tritrichomonas foetus infection. Exp Parasitol 156:32–36

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bringas P Jr, Soriano P, Chai Y (2005) PDGFR-α signaling is critical for tooth cusp and palate morphogenesis. Dev Dyn 232:75–84

Download references

Acknowledgments

We wish to especially thank the Editor, and the two reviewers, Dr. M. Sánchez-Villagra and an anonymus reviewer, for their helpful comments and suggestions; to Jimena Barbeito-Andrés for her critical reading of the manuscript, and Pablo Strobl-Mazzulla for supplying HNK-1 antibody. This work was partially funded by the Consejo Nacional de Investigaciones Científicas (PIP-0798) and Universidad Nacional de La Plata (N-724 and N-871), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Mariana Krmpotic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krmpotic, C.M., Nishida, F., Galliari, F.C. et al. The Dorsal Integument of the Southern Long-Nosed Armadillo Dasypus hybridus (Cingulata, Xenarthra), and a Possible Neural Crest Origin of the Osteoderms. Discussing Evolutive Consequences for Amniota. J Mammal Evol 28, 635–645 (2021). https://doi.org/10.1007/s10914-021-09538-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-021-09538-9

Keywords

Navigation