Skip to main content
Log in

Locating a double vacancy or Stone–Wales point defect on a hexagonal quantum grid

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A graphene nano-ribbon structure can be modelled by a 3-regular hexagonal grid. We convert this to a rectangular coordinate system in order to identify uniquely the position of either the \(\text {V}_2(5-8-5)\) double vacancy (DV) defect or the Stone–Wales SW(55–77) defect. This is done by using the lengths of the closed paths along the edges of the underlying graph. By sending a signal from one of the vertices and detecting the returning impulses one can observe experimentally the spectrum of the structure. Using the trace formula it is possible to determine the lengths of all closed paths (periodic orbits) starting and ending at the given vertex where a detector is placed. We present an algorithm which enables one to pinpoint the precise coordinates of a DV defect by using at most three reference points. Similarly we provide an algorithm for finding an SW defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Archibald, S. Currie, M. Nowaczyk, Finding the hole in a wall. Journal of Mathematical Chemistry 58, 2313–2323 (2020). https://doi.org/10.1007/s10910-020-01178-3

    Article  CAS  Google Scholar 

  2. F. Banhart, J. Kotakoski, A.V. Krashaninnikov, Structual defects in graphene. American Chemical Society 5(1), 26–41 (2011). https://doi.org/10.1021/nn102598m

    Article  CAS  Google Scholar 

  3. M. Manoharan, H. Mizuta, Point defect-induced transport bandgap widening in the downscaled armchair graphene nanoribbon device. Carbon 64, 416–423 (2013). https://doi.org/10.1016/j.carbon.2013.07.094

    Article  CAS  Google Scholar 

  4. I. Shtepliuk, R. Yakimova, Interband transitions in closed-shell vacancy containing graphene quantum dots complexed with heavy metals. Physical Chemistry Chemical Physics: PCCP 20, 21528–21543 (2018). https://doi.org/10.1039/C8CP03306D

    Article  CAS  PubMed  Google Scholar 

  5. P. Exner, Contact interactions on graph superlattices. Journal of Physics A: Mathematical and General 29, 87–102 (1996). https://doi.org/10.1088/0305-4470/29/1/011

    Article  CAS  Google Scholar 

  6. J. Griffith, A free-electron theory of conjugated molecules I. Polycyclic Hydrocarbons. Transactions of the Faraday Society 49, 345–351 (1953). https://doi.org/10.1039/TF9534900345

    Article  CAS  Google Scholar 

  7. B. Gutkin, U. Smilansky, Can one hear the shape of a graph? Journal of Physics A: Mathematical and General 34, 6061–6068 (2001). https://doi.org/10.1088/0305-4470/34/31/301

    Article  Google Scholar 

  8. P. Kuchment, Graph models for waves in thin structures. Waves in Random Media 12, R1–R24 (2002). https://doi.org/10.1088/0959-7174/12/4/201

    Article  Google Scholar 

  9. P. Kurasov, M. Nowaczyk, Inverse spectral problem for quantum graphs. Journal of Physics A: Mathematical and General 38, 4901–4915 (2005). https://doi.org/10.1088/0305-4470/38/22/014

    Article  Google Scholar 

  10. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters 8(11), 3582–3586 (2008). https://doi.org/10.1021/nl801386m

    Article  CAS  PubMed  Google Scholar 

  11. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, From point defects in graphene to two-dimensional amorphous carbon. Physical Review Letters 106(10), 105505 (2011)

    Article  CAS  Google Scholar 

  12. K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs. Letters in Mathematical Physics 77, 139–154 (2006). https://doi.org/10.1007/s11005-006-0088-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Currie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Archibald: National Research Foundation Grant Number 89147

S. Currie: National Research Foundation Grant Number 103530.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archibald, M., Currie, S. & Nowaczyk, M. Locating a double vacancy or Stone–Wales point defect on a hexagonal quantum grid. J Math Chem 60, 862–873 (2022). https://doi.org/10.1007/s10910-022-01337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01337-8

Keywords

Mathematics Subject Classification

Navigation