Skip to main content
Log in

High Quality Quasinormal Modes of Phononic Crystals for Quantum Acoustodynamics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Phononic crystals are a promising platform for the study of quantum acoustodynamics. In a recent experiment, the interaction of a superconducting quantum bit with modes of a phononic crystal has been demonstrated. The field of these modes is localized in a compact area, providing high values of the coupling constant with the qubit. However, the Q-factor of phononic crystal modes is strongly limited (\(\sim\)1050) due to a phonon emission from the crystal ends. For further use of phononic crystals in research in the field of quantum acoustodynamics, it is desirable to overcome this limitation in the quality factor. In this work, we have proposed a structure consisting of a phononic crystal placed between the Bragg mirrors. Our simulations predict that the Q-factor in such a structure can reach (\(\sim\)100000). We demonstrate experimental results in which this structure has a Q-factor (\(\sim\) 60,000), which is 60 times higher than that of an acoustic crystal of the same size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

Relevant data are available from the corresponding author upon request.

References

  1. M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, P. Delsing, Propagating phonons coupled to an artificial atom. Science 346(6206), 207–211 (2014)

    Article  ADS  Google Scholar 

  2. R. Manenti, A.F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P.J. Leek, Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8(1), 975 (2017)

    Article  ADS  Google Scholar 

  3. A.N. Bolgar, J.I. Zotova, D.D. Kirichenko, I.S. Besedin, A.V. Semenov, R.S. Shaikhaidarov, O.V. Astafiev, Quantum regime of a two-dimensional phonon cavity. Phys. Rev. Lett. 120(22), 223603 (2018)

    Article  ADS  Google Scholar 

  4. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides et al., Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697–703 (2010)

    Article  ADS  Google Scholar 

  5. F. Rouxinol, Y. Hao, F. Brito, A. Caldeira, E. Irish, M. LaHaye, Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system. Nanotechnology 27(36), 364003 (2016)

    Article  Google Scholar 

  6. M. LaHaye, J. Suh, P. Echternach, K.C. Schwab, M.L. Roukes, Nanomechanical measurements of a superconducting qubit. Nature 459(7249), 960–964 (2009)

    Article  ADS  Google Scholar 

  7. J.-M. Pirkkalainen, S. Cho, J. Li, G. Paraoanu, P. Hakonen, M. Sillanpää, Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494(7436), 211–215 (2013)

    Article  ADS  Google Scholar 

  8. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, M. Wang, D. Sank, H. Wang, M. Weides, J.M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697–703 (2010)

    Article  ADS  Google Scholar 

  9. R. Manenti, M. Peterer, A. Nersisyan, E. Magnusson, A. Patterson, P. Leek, Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93(4), 041411 (2016)

    Article  ADS  Google Scholar 

  10. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  11. J. Preskill, Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  12. Y. Ye, Z.-Y. Ge, Y. Wu, S. Wang, M. Gong, Y.-R. Zhang, Q. Zhu, R. Yang, S. Li, F. Liang et al., Propagation and localization of collective excitations on a 24-qubit superconducting processor. Phys. Rev. Lett. 123(5), 050502 (2019)

    Article  ADS  Google Scholar 

  13. X. Gu, A.F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori, Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J.-Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature 474(7353), 589–597 (2011)

    Article  ADS  Google Scholar 

  15. A.F. Kockum, F. Nori, Quantum bits with Josephson junctions. In: Fundamentals and Frontiers of the Josephson Effect, 703–741. Springer, (2019)

  16. E.B. Magnusson, B.H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M.J. Peterer, A. Ardavan, P.J. Leek, Surface acoustic wave devices on bulk zno crystals at low temperature. Appl. Phys. Lett. 106(6), 063509 (2015)

    Article  ADS  Google Scholar 

  17. A.N. Bolgar, D.D. Kirichenko, R. Shaikhaidarov, S.V. Sanduleanu, A.V. Semenov, A.Y. Dmitriev, O.V. Astafiev et al., A phononic crystal coupled to a transmission line via an artificial atom. Commun. Phys. 3(1), 1–6 (2020)

    Article  Google Scholar 

  18. D. Morgan, Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic Press, London, 2010)

    Google Scholar 

  19. G. Andersson, S.W. Jolin, M. Scigliuzzo, R. Borgani, M.O. Tholén, J.C. Rivera Hernández, V. Shumeiko, D.B. Haviland, P. Delsing, Squeezing and multimode entanglement of surface acoustic wave phonons. PRX Quant. 3, 010312 (2022). https://doi.org/10.1103/PRXQuantum.3.010312

    Article  ADS  Google Scholar 

  20. Aref, T., Delsing, P., Ekström, M.K., Kockum, A.F., Gustafsson, M.V., Johansson, G., Leek, P.J., Magnusson, E., Manenti, R.: In: Hadfield, R.H., Johansson, G. (eds.) Quantum Acoustics with Surface Acoustic Waves, 217–244. Springer: Cham (2016). https://doi.org/10.1007/978-3-319-24091-6_9

  21. G. Andersson, A.L.O. Bilobran, M. Scigliuzzo, M.M. de Lima, J.H. Cole, P. Delsing, Acoustic spectral hole-burning in a two-level system ensemble. NPJ Quant. Inf. 7(1), 1–5 (2021)

    ADS  Google Scholar 

  22. A. Settimi, S. Severini, N. Mattiucci, C. Sibilia, M. Centini, G. D’Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, C. Bowden, Quasinormal-mode description of waves in one-dimensional photonic crystals. Phys. Rev. E 68(2), 026614 (2003)

    Article  ADS  Google Scholar 

  23. S. Severini, A. Settimi, C. Sibilia, M. Bertolotti, A. Napoli, A. Messina, Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach. Phys. Rev. E 70(5), 056614 (2004)

    Article  ADS  Google Scholar 

  24. P. Leung, S. Liu, K. Young, Completeness and orthogonality of quasinormal modes in leaky optical cavities. Phys. Rev. A 49(4), 3057 (1994)

    Article  ADS  Google Scholar 

  25. E. Ching, P. Leung, A.M. Van Den Brink, W. Suen, S. Tong, K. Young, Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70(4), 1545 (1998)

    Article  ADS  Google Scholar 

  26. A. Settimi, Classical and quantum approach of quasi normal modes in linear optical regime: an application to one dimensional photonic crystals. arXiv preprint arXiv:1005.1344 (2010)

Download references

Acknowledgements

We acknowledge Russian Science Foundation (Grant No. 21-42-00025) for supporting the work. This work was performed using technological equipment of MIPT Shared Facilities Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey N. Bolgar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolgar, A.N., Sanduleanu, S.V., Strelnikov, A. et al. High Quality Quasinormal Modes of Phononic Crystals for Quantum Acoustodynamics. J Low Temp Phys 210, 573–587 (2023). https://doi.org/10.1007/s10909-022-02871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02871-0

Keywords

Navigation