Skip to main content
Log in

Thermalization of an Oscillating Bose Condensate in a Disordered Trap

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Previously, we numerically showed that thermalization can occur in an oscillating Bose–Einstein condensate with a disordered harmonic trap when the healing length \(\xi \) of the condensate is shorter than the correlation length \(\sigma _{D}\) of the Gaussian disorder [see, for example, the experiment reported in Dries et al. (Phys Rev A 82:033603, 2010)]. In this work, we investigate and show that in the \(\xi >\sigma _{D}\) (Anderson localization) regime, the system can also exhibit a relaxation process from nonequilibrium to equilibrium. In such an isolated quantum system, energy and particle number are conserved and the irreversible evolution toward thermodynamic equilibrium is induced by the disorder. The thermodynamic equilibrium is evidenced by the maximized entropy \(S\left[ n_{k}\right] \) in which the waveaction spectrum \(n_{k}\) follows the Rayleigh–Jeans distribution. Besides, unlike a monotonic irreversible process of thermalization to equilibrium, the Fermi–Pasta–Ulam–Tsingou recurrence arises in this system, manifested by the oscillation of the nonequilibrium entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900 (2006)

    Article  ADS  Google Scholar 

  2. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  3. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011)

    Article  ADS  Google Scholar 

  4. F. Borgonovi, F.M. Izrailev, L.F. Santos, V.G. Zelevinsky, Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626, 1–58 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. C.-H. Hsueh, R. Ong, J.-F. Tseng, M. Tsubota, W.C. Wu, Thermalization and localization of an oscillating Bose–Einstein condensate in a disordered trap. Phys. Rev. A 98, 063613 (2018)

    Article  ADS  Google Scholar 

  6. D. Dries, S.E. Pollack, J.M. Hitchcock, R.G. Hulet, Dissipative transport of a Bose–Einstein condensate. Phys. Rev. A 82, 033603 (2010)

    Article  ADS  Google Scholar 

  7. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Condensation of classical nonlinear waves. Phys. Rev. Lett. 95, 263901 (2005)

    Article  ADS  Google Scholar 

  8. A. Picozzi, Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Optics Express 15, 9063 (2007)

    Article  ADS  Google Scholar 

  9. C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, J.W. Fleischer, Observation of the kinetic condensation of classical waves. Nat. Phys. 8, 470 (2012)

    Article  Google Scholar 

  10. N. Cherroret, T. Karpiuk, B. Grémaud, C. Miniatura, Thermalization of matter waves in speckle potentials. Phys. Rev. A 92, 063614 (2015)

    Article  ADS  Google Scholar 

  11. L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G.V. Shlyapnikov, A. Aspect, Anderson localization of expanding Bose–Einstein condensates in random potential. Phys. Rev. Lett. 98, 210401 (2007)

    Article  ADS  Google Scholar 

  12. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity, vol. 174 (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  13. S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  14. J. Ford, The Fermi–Pasta–Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.M. Zaslavsky, Long way from the FPU-problem to chaos. Chaos 15, 015103 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. M. Guasoni, J. Garnier, B. Rumpf, D. Sugny, J. Fatome, F. Amrani, G. Millot, A. Picozzi, Incoherent Fermi–Pasta–Ulam recurrences and unconstrained thermalization mediated by strong phase correlations. Phys. Rev. X 7, 011025 (2017)

    Google Scholar 

  17. P. Aschieri, J. Garnier, C. Michel, V. Doya, A. Picozzi, Condensation and thermalization of classical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial supports from MOST, Taiwan (Grant No. MOST 107-2112-M-003-008), JSPS KAKENHI (Grant No. 17K05548) and MEXT KAKENHI/Fluctuation and Structure (Grant No. 16H00807), and NCTS of Taiwan are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsueh, CH., Tsubota, M. & Wu, WC. Thermalization of an Oscillating Bose Condensate in a Disordered Trap. J Low Temp Phys 196, 13–20 (2019). https://doi.org/10.1007/s10909-019-02181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02181-y

Keywords

Navigation