Skip to main content
Log in

Alternative regularizations for Outer-Approximation algorithms for convex MINLP

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this work, we extend the regularization framework from Kronqvist et al. (Math Program 180(1):285–310, 2020) by incorporating several new regularization functions and develop a regularized single-tree search method for solving convex mixed-integer nonlinear programming (MINLP) problems. We propose a set of regularization functions based on distance metrics and Lagrangean approximations, used in the projection problem for finding new integer combinations to be used within the Outer-Approximation (OA) method. The new approach, called Regularized Outer-Approximation (ROA), has been implemented as part of the open-source Mixed-integer nonlinear decomposition toolbox for Pyomo—MindtPy. We compare the OA method with seven regularization function alternatives for ROA. Moreover, we extend the LP/NLP Branch and Bound method proposed by Quesada and Grossmann (Comput Chem Eng 16(10–11):937–947, 1992) to include regularization in an algorithm denoted RLP/NLP. We provide convergence guarantees for both ROA and RLP/NLP. Finally, we perform an extensive computational experiment considering all convex MINLP problems in the benchmark library MINLPLib. The computational results show clear advantages of using regularization combined with the OA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Retrieved on May 7, 2021, from http://www.minlplib.org/.

  2. https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html

  3. http://minlplib.org/cvxnonsep_normcon20.html

  4. http://www.minlplib.org/cvxnonsep_psig40.html

  5. http://www.minlplib.org/nvs11.html

  6. http://www.minlplib.org/nvs12.html

  7. http://minlplib.org/slay08m.html

  8. http://minlplib.org/smallinvDAXr1b150-165.html

  9. The datasets generated during and analysed during the current study are available in the GitHub repository, https://zedongpeng.github.io/ROA-RLPNLP-Benchmark/.

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: An outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22(4), 555–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  3. Bernal, D.E., Chen, Q., Gong, F., Grossmann, I.E.: Mixed-integer nonlinear decomposition toolbox for Pyomo (MindtPy). In: Computer Aided Chemical Engineering, vol 44, pp. 895–900. Elsevier (2018)

  4. Bernal, D.E., Vigerske, S., Trespalacios, F., Grossmann, I.E.: Improving the performance of DICOPT in convex MINLP problems using a feasibility pump. Optim. Methods Softw. 35(1), 171–190 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008). https://doi.org/10.1016/j.disopt.2006.10.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119(2), 331–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization. CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib-a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bussieck, M.R., Dirkse, S.P., Vigerske, S.: PAVER 2.0: an open source environment for automated performance analysis of benchmarking data. J. Glob. Optim. 59(2–3), 259–275 (2014)

    Article  MATH  Google Scholar 

  11. Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-integer convex problems. Math. Program. Comput. 12, 249–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  13. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delfino, A., de Oliveira, W.: Outer-approximation algorithms for nonsmooth convex MINLP problems. Optimization 67(6), 797–819 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fletcher, R.: Practical Methods of Optimization. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  17. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995)

    Book  MATH  Google Scholar 

  19. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manage. Sci. 31(12), 1533–1546 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, S.P.: Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math. Program. 11(1), 263–282 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L., Hackebeil, G.A., Nicholson, B.L., Siirola, J.D., et al.: Pyomo-optimization Modeling in Python, vol. 67. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  23. den Hertog, D., Kaliski, J., Roos, C., Terlaky, T.: A logarithmic barrier cutting plane method for convex programming. Ann. Oper. Res. 58(2), 67–98 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. HSL: A collection of Fortran codes for large scale scientific computation (2007). http://www.hsl.rl.ac.uk

  25. Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical report, AIMMS B.V (2011)

  26. IBM Corp, IBM: V20.1: User’s Manual for CPLEX. International Business Machines Corporation (2020) https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex

  27. Kelley, J.E., Jr.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10(3), 383–421 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69(1–3), 89–109 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 1. Wiley, New York (1978)

    MATH  Google Scholar 

  31. Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kronqvist, J., Lundell, A., Westerlund, T.: Reformulations for utilizing separability when solving convex MINLP problems. J. Glob. Optim. 71(3), 571–592 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and comparison of solvers for convex MINLP. Optim. Eng. 20(2), 397–455 (2019)

    Article  MathSciNet  Google Scholar 

  34. Kronqvist, J., Bernal, D.E., Lundell, A., Westerlund, T.: A center-cut algorithm for quickly obtaining feasible solutions and solving convex MINLP problems. Comput. Chem. Eng. 122, 105–113 (2019)

    Article  Google Scholar 

  35. Kronqvist, J., Bernal, D.E., Grossmann, I.E.: Using regularization and second order information in outer approximation for convex MINLP. Math. Program. 180(1), 285–310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, J., Leyffer, S.: Mixed Integer Nonlinear Programming, vol. 154. Springer, Berlin (2011)

    Google Scholar 

  37. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liberti, L., Marinelli, F.: Mathematical programming: turing completeness and applications to software analysis. J. Comb. Optim. 28(1), 82–104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational approach. In: Foundations of Computational Intelligence, vol. 3, pp. 153–234. Springer (2009)

  40. Lundell, A., Kronqvist, J.: Integration of polyhedral outer approximation algorithms with mip solvers through callbacks and lazy constraints. In: AIP Conference Proceedings, AIP Publishing LLC, vol. 2070. p. 020012 (2019)

  41. Lundell, A., Kronqvist, J., Westerlund, T.: The supporting hyperplane optimization toolkit for convex MINLP. J. Glob. Optim. 1–41 (2022)

  42. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2004)

    MATH  Google Scholar 

  43. de Oliveira, W.: Regularized optimization methods for convex MINLP problems. TOP 24(3), 665–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)

    Article  Google Scholar 

  45. Sawaya, N., Grossmann, I.E.: Reformulations, relaxations and cutting planes for linear generalized disjunctive programming (2008)

  46. Slater, M.: Lagrange multipliers revisited. Cowles Foundation for Research in Economics, Yale University, Technical reports (1950)

  47. Su, L., Tang, L., Bernal, D.E., Grossmann, I.E.: Improved quadratic cuts for convex mixed-integer nonlinear programs. Comput. Chem. Eng. 109, 77–95 (2018)

    Article  Google Scholar 

  48. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, Berlin (2013)

    MATH  Google Scholar 

  49. Trespalacios, F., Grossmann, I.E.: Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tec. 86(7), 991–1012 (2014)

    Article  Google Scholar 

  50. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Westerlund, T., Petterson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

David E. Bernal and Ignacio E. Grossmann would like to thank the Center Advanced Process Decision Making (CAPD) for its financial support. David E. Bernal also acknowledges USRA NASA Academic Mission Services (contract NNA16BD14C). Zedong Peng is grateful for the financial support from the China Scholarship Council (CSC) (No. 201906320320). Jan Kronqvist is grateful for the Newton International Fellowship by the Royal Society (NIF\R1\182194), a grant by the Swedish Cultural Foundation in Finland, and support by Digital Futures at KTH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio E. Grossmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Algorithmic description of OA and LP/NLP branch and bound

This section presents the algorithmic description of the Outer-Approximation method [15, 17], in Algorithm 3, and the LP/NLP Branch and Bound method [6, 44], in Algorithm 4.

figure c
figure d

1.2 Representing \(\ell _1\) and \(\ell _\infty \) norms using linear programming

This section shows the valid reformulations of optimization problems with norms one and infinity in the objective function using auxiliary variables and linear constraints. This reformulation is exact in the sense that they preserve the local and global optima from the original problem [39]. These reformulations are particularly interesting since they allow the regularization problem MIP-Proj to be written as Mixed-Integer Linear Programming (MILP) problems, instead of Mixed-Integer Quadratic Programming (MIQP) problems, as in the work by Kronqvist et al. [35]. MILP solution methods’ maturity over MIQP allows these problems to be more quickly solvable in practice.

The norm-1 of a vector \({\mathbf {v}} \in V \subseteq {\mathbb {R}}^N\) whose components might be negative or positive, \(\ell _1({\mathbf {v}})=\left\| {\mathbf {v}}\right\| _1 = \sum _{i=1}^{N} |v_i|\) can be reformulated in the case that this term appears in the objective function with a set of linear constraints. Through the addition of 2N non-negative slack variables \({\mathbf {s}}^+,{\mathbf {s}}^- \in {\mathbb {R}}_+^{N}\), and N linear equality constraints the following reformulation is valid:

$$\begin{aligned} \begin{array}{ll} \min \limits _{{\mathbf {v}}} &{}\quad \left\| {\mathbf {v}}\right\| _1 \\ \text {s.t.}\, &{}\quad {\mathbf {v}} \in V \subseteq {\mathbb {R}}^N \end{array} \Leftrightarrow \begin{array}{ll} \min \limits _{{\mathbf {v}}, {\mathbf {s}}^+, {\mathbf {s}}^-} &{}\quad \sum _{i=1}^{N} s_i^+ + s_i^- \\ \text {s.t.}\, &{}\quad {\mathbf {s}}^+ - {\mathbf {s}}^- = {\mathbf {v}}\\ &{}\quad {\mathbf {v}} \in V \subseteq {\mathbb {R}}^N,\quad {\mathbf {s}}^+ \in {\mathbb {R}}_+^{N},\quad {\mathbf {s}}^- \in {\mathbb {R}}_+^{N}. \end{array} \end{aligned}$$
(18)

This reformulation is applied to the regularization problem MIP-Proj when considering the \(\ell _1\) regularization function as in (4), resulting in problem MIP-Proj-\(\ell _1\). It can also be potentially applied to the feasibility NLP problem NLP-f.

figure e
Fig. 11
figure 11

Time performance profile for multi-tree ROA method as described in Algorithm 1. (Color figure online)

Fig. 12
figure 12

Iteration performance profile for multi-tree ROA method as described in Algorithm 1. (Color figure online)

Fig. 13
figure 13

Time performance profile for single-tree RLP/NLP methods as described in Algorithm 2. (Color figure online)

Fig. 14
figure 14

Iteration performance profile single-tree RLP/NLP methods as described in Algorithm 2. (Color figure online)

The norm-\(\infty \) of a vector \({\mathbf {v}} \in V \subseteq {\mathbb {R}}^N\) whose components might be negative or positive, \(\ell _\infty ({\mathbf {v}})=\left\| {\mathbf {v}}\right\| _\infty = \max _{i=\{1,\ldots ,N\}} |v_i|\) can be reformulated in the case that this term appears in the objective function with a set of linear constraints. Through the addition of one non-negative slack variable \(s \in {\mathbb {R}}_+\), and 2N linear inequality constraints, the following reformulation is valid:

$$\begin{aligned} \begin{array}{ll} \min \limits _{{\mathbf {v}}} &{}\quad \left\| {\mathbf {v}}\right\| _\infty \\ \text {s.t.}\, &{}\quad {\mathbf {v}} \in V \subseteq {\mathbb {R}}^N \end{array} \Leftrightarrow \begin{array}{ll} \min \limits _{{\mathbf {v}}, s} &{}\quad s \\ \text {s.t.}\, &{}\quad s \ge {\mathbf {v}}\\ &{}\quad s \ge -{\mathbf {v}}\\ &{}\quad {\mathbf {v}} \in V \subseteq {\mathbb {R}}^N,\quad s \in {\mathbb {R}}_+ . \end{array} \end{aligned}$$
(19)

This is the usual choice for reformulating problem NLP-f, and can also be used to reformulate problem MIP-Proj with \(\ell _\infty \) regularization objective function, as in (5). This last problem formulation is:

figure f

1.3 Performance profiles for problem set 1

This section of the Appendix presents the performance profiles for the multi-tree and single-tree implementation of the methods included in this manuscript when solving all 358 convex MINLP problems in Problem Set 1. Figures 11 and 12 include the time and iteration performance profiles for the multi-tree implementation, respectively. Figures 13 and 14 include the time and iteration performance profiles for the single-tree implementation, respectively. Notice that we define iterations in the single-tree context as the number of NLP-I problems solved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal, D.E., Peng, Z., Kronqvist, J. et al. Alternative regularizations for Outer-Approximation algorithms for convex MINLP. J Glob Optim 84, 807–842 (2022). https://doi.org/10.1007/s10898-022-01178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01178-4

Keywords

Navigation