Skip to main content
Log in

Side-constrained minimum sum-of-squares clustering: mathematical programming and random projections

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper investigates a mathematical programming based methodology for solving the minimum sum-of-squares clustering problem, also known as the “k-means problem”, in the presence of side constraints. We propose several exact and approximate mixed-integer linear and nonlinear formulations. The approximations are based on norm inequalities and random projections, the approximation guarantees of which are based on an additive version of the Johnson–Lindenstrauss lemma. We perform computational testing (with fixed CPU time) on a range of randomly generated and real data instances of medium size, but with high dimensionality. We show that when side constraints make k-means inapplicable, our proposed methodology—which is easy and fast to implement and deploy—can obtain good solutions in limited amounts of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated and analysed in this paper are available upon request from the corresponding author.

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ailon, N., Chazelle, B.: Approximate nearest neighbors and fast Johnson–Lindenstrauss lemma. In: Proceedings of the Symposium on the Theory Of Computing. STOC, vol. ’06. ACM, Seattle (2006)

  3. Allen-Zhu, Z., Gelashvili, R., Micali, S., Shavit, N.: Sparse sign-consistent Johnson–Lindenstrauss matrices: compression with neuroscience-based constraints. Proc. Natl. Acad. Sci. 111(47), 16872–16876 (2014)

    Article  Google Scholar 

  4. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for minimum sum-of-squares clustering. Math. Program. A 131, 195–220 (2012)

    Article  MathSciNet  Google Scholar 

  5. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation. In: Simonis, H. (ed.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR), LNCS, vol. 8451. Springer, Heidelberg (2014)

    Google Scholar 

  6. Becchetti, L., Bury, M., Cohen-Addad, V., Grandoni, F., Schwiegelshohn, C.: Oblivious dimension reduction for \(k\)-means: beyond subspaces and the Johnson–Lindenstrauss lemma. In: Proceedings of the 51st Annual ACM Symposium on the Theory of Computing. STOC, pp. 1039–1050. ACM, New York (2019)

  7. Bell, E.: The iterated exponential integers. Ann. Math. 39, 539–557 (1938)

    Article  MathSciNet  Google Scholar 

  8. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4), 597–634 (2009)

    Article  MathSciNet  Google Scholar 

  9. Blömer, J., Lammersen, C., Schmidt, M., Sohler, C.: Theoretical analysis of the k-means algorithm: a survey. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 81–116. Springer, Cham (2016)

    Chapter  Google Scholar 

  10. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions, and universal machines. Bull. AMS 21(1), 1–46 (1989)

    Article  MathSciNet  Google Scholar 

  11. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)

    Article  MathSciNet  Google Scholar 

  12. Bonami, P., Lee, J.: BONMIN user’s manual. Tech. rep., IBM Corporation (2007)

  13. Boutsidis, C., Zouzias, A., Drineas, P.: Random projections for \(k\)-means clustering. In: Advances in Neural Information Processing Systems. NIPS, pp. 298–306. NIPS Foundation, La Jolla (2010)

  14. Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., Tagiku, B.: Streaming k-means on well-clusterable data. In: Proceedings of the 22nd annual ACM Symposium on Discrete Algorithms. SODA, vol. 22, pp. 26–40. ACM, Philadelphia (2011)

  15. Bury, M., Schwiegelshohn, C.: Random projection for \(k\)-means: maintaining coresets beyond merge & reduce. Tech. Rep. arXiv:1504.01584v3 (2015)

  16. Clarkson, K., Woodruff, D.: Numerical linear algebra in the streaming model. In: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing. STOC, pp. 205–241. ACM, New York (2009)

  17. Cohen, M., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduction for \(k\)-means clustering and low-rank approximation. In: Proceedings of the 47th Annual ACM Symposium on the Theory of Computing. STOC, pp. 163–172. ACM, New York (2015)

  18. D’Ambrosio, C., Liberti, L., Poirion, P.L., Vu, K.: Random projections for quadratic programs. Math. Program. B 183, 619–647 (2020)

  19. Dao, T.B.H., Duong, K.C., Vrain, C.: Constrained minimum sum of squares clustering by constraint programming. In: Pesant, G. (ed.) Principles and Practice of Constraint Programming. LNCS, vol. 9255, pp. 557–573. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  20. Dasgupta, S., Gupta, A.: An elementary proof of a theorem by Johnson and Lindenstrauss. Random Struct. Algorithms 22, 60–65 (2002)

    Article  Google Scholar 

  21. Davidson, I., Ravi, S.: Clustering with constraints: feasibility issues and the \(k\)-means algorithm. In: Proceedings of the SIAM International Conference on Data Mining. ICDM, pp. 138–149. SIAM, Philadelphia (2005)

  22. de Bruijn, N.: Asymptotic Methods in Analysis. Dover, New York (1981)

    MATH  Google Scholar 

  23. du Merle, O., Hansen, P., Jaumard, B., Mladenović, N.: An interior point algorithm for minimum sum-of-squares clustering. SIAM J. Sci. Comput. 21(4), 1485–1505 (2000)

    Article  MathSciNet  Google Scholar 

  24. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml. Accessed 24 May 2020

  25. Duong, K.-C., Vrain, C.: Constrained clustering by constraint programming. Artif. Intell. 244, 70–94 (2017)

    Article  MathSciNet  Google Scholar 

  26. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  MathSciNet  Google Scholar 

  27. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  Google Scholar 

  28. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–37 (2005)

    Article  MathSciNet  Google Scholar 

  29. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1991)

    MATH  Google Scholar 

  30. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  MathSciNet  Google Scholar 

  31. Fletcher, R., Leyffer, S.: Numerical experience with lower bounds for MIQP branch-and-bound. SIAM J. Optim. 8(2), 604–616 (1998)

    Article  MathSciNet  Google Scholar 

  32. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)

    Google Scholar 

  33. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP optimization suite 6.0. Technical report, Optimization Online (2018). http://www.optimization-online.org/DB_HTML/2018/07/6692.html

  34. Gordon, A., Henderson, J.: An algorithm for Euclidean sum of squares classification. Biometrics 33(2), 355–362 (1977)

    Article  Google Scholar 

  35. Goubault, E., Roux, S.L., Leconte, J., Liberti, L., Marinelli, F.: Static analysis by abstract interpretation: a mathematical programming approach. In: Miné, A., Rodriguez-Carbonell, E. (eds.) Proceeding of the Second International Workshop on Numerical and Symbolic Abstract Domains. Electronic Notes in Theoretical Computer Science, vol. 267(1), pp. 73–87. Elsevier (2010)

  36. Grossi, V., Monreale, A., Nanni, M., Pedreschi, D., Turini, F.: Clustering formulation using constraint optimization. In: Bianculli, D. et al. (ed.) SEFM Workshops. LNCS, vol. 9509, pp. 93–107. Springer, Heidelberg (2015)

  37. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program. 79, 191–215 (1997)

    MathSciNet  MATH  Google Scholar 

  38. IBM: ILOG CPLEX 12.8 user’s manual. IBM (2017)

  39. IBM: ILOG CPLEX 12.10 user’s manual. IBM (2020)

  40. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Hedlund, G. (ed.) Conference in Modern Analysis and Probability. Contemporary Mathematics, vol. 26, pp. 189–206. AMS, Providence, RI (1984)

  41. Klein, D., Kamvar, S., Manning, C.: From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: Proceedings of the 19th International Conference on Machine Learning. ICML, pp. 307–314. Morgan Kaufmann, San Francisco (2002)

  42. Liberti, L.: Reformulations in mathematical programming: definitions and systematics. RAIRO-RO 43(1), 55–86 (2009)

    Article  MathSciNet  Google Scholar 

  43. Liberti, L.: Undecidability and hardness in mixed-integer nonlinear programming. RAIRO Oper. Res. 53, 81–109 (2019)

    Article  MathSciNet  Google Scholar 

  44. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational approach. In: Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Studies in Computational Intelligence, vol. 3, no. 203, pp. 153–234. Springer, Berlin (2009)

  45. Liberti, L., Marinelli, F.: Mathematical programming: turing completeness and applications to software analysis. J. Comb. Optim. 28(1), 82–104 (2014)

    Article  MathSciNet  Google Scholar 

  46. Lovasz, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  47. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

  48. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Pham, N.T.: Quantile regression in large energy datasets. Master’s thesis, LIX, Ecole Poltyechnique (2018)

  50. Pilanci, M., Wainwright, M.: Randomized sketches of convex programs with sharp guarantees. In: International Symposium on Information Theory (ISIT), pp. 921–925. IEEE, Piscataway (2014)

  51. Pilanci, M., Wainwright, M.: Newton sketch: a linear time optimization algorithm with linear-quadratic convergence. SIAM J. Optim. 27(1), 205–245 (2017)

    Article  MathSciNet  Google Scholar 

  52. Sarlós, T.: Improved approximation algorithms for large matrices via random projections. In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science. FOCS, vol. 47, pp. 143–152. IEEE, Washington (2006)

  53. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)

    Article  Google Scholar 

  54. Steinhaus, H.: Sur la division des corps matériels en parties. Bull. Acad. Pol. des Sci. Cl. III 4(12), 801–804 (1956)

    MATH  Google Scholar 

  55. Steinley, D.: K-means clustering: a half-century synthesis. Br. J. Math. Stat. Psychol. 59, 1–34 (2006)

    Article  MathSciNet  Google Scholar 

  56. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  Google Scholar 

  57. van Rossum, G., et al.: Python language reference, version 3. Python Software Foundation (2019)

  58. Vempala, S.: The Random Projection Method. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 65. AMS, Providence (2004)

    MATH  Google Scholar 

  59. Vershynin, R.: High-dimensional Probability. CUP, Cambridge (2018)

    Book  Google Scholar 

  60. Vu, K., Poirion, P.L., D’Ambrosio, C., Liberti, L.: Random projections for quadratic programs over a Euclidean ball. In: Lodi, A., et al. (eds.) Integer Programming and Combinatorial Optimization (IPCO). LNCS, vol. 11480, pp. 442–452. Springer, New York (2019)

    Chapter  Google Scholar 

  61. Vu, K., Poirion, P.L., Liberti, L.: Random projections for linear programming. Math. Oper. Res. 43(4), 1051–1071 (2018)

    Article  MathSciNet  Google Scholar 

  62. Vu, K., Poirion, P.L., Liberti, L.: Gaussian random projections for Euclidean membership problems. Discrete Appl. Math. 253, 93–102 (2019)

    Article  MathSciNet  Google Scholar 

  63. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  64. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings of the 17th International Conference on Machine Learning. ICML, pp. 1103–1110. Morgan Kaufmann, San Francisco (2000)

  65. Wang, O., de Sainte Marie, C., Ke, C., Liberti, L.: Universality and prediction in business rules. Comput. Intell. 34, 763–785 (2018)

  66. Yang, J., Meng, X., Mahoney, M.: Quantile regression for large-scale applications. SIAM J. Sci. Comput. 36(5), S78–S110 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 764759 “MINOA”. The second author was supported by KASBA, funded by Regione Autonoma della Sardegna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liberti, L., Manca, B. Side-constrained minimum sum-of-squares clustering: mathematical programming and random projections. J Glob Optim 83, 83–118 (2022). https://doi.org/10.1007/s10898-021-01047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01047-6

Keywords

Navigation