Skip to main content
Log in

An exact completely positive programming formulation for the discrete ordered median problem: an extended version

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a first continuous, linear, conic formulation for the discrete ordered median problem (DOMP). Starting from a binary, quadratic formulation in the original space of location and allocation variables that are common in location analysis (L.A.), we prove that there exists a transformation of that formulation, using the same space of variables, that allows us to cast DOMP as a continuous, linear programming problem in the space of completely positive matrices. This is the first positive result that states equivalence between the family of continuous, convex problems and some hard combinatorial problems in L.A. The result is of theoretical interest because it allows us to share the tools from continuous optimization to shed new light into the difficult combinatorial structure of the class of ordered median problems that combines elements of the p-median, quadratic assignment and permutation polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, L., Mitchell, J.E., Pang, J.-S.: On conic qpccs, conic qcqps and completely positive programs. Math. Program. 159(1), 109–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanco, V., Ali, S El Haj Ben, Puerto, J.: Revisiting several problems and algorithms in continuous location wih \(l_\tau -\)norm. Comput. Optim. Appl. 58(3), 563–595 (2014)

    Article  MathSciNet  Google Scholar 

  3. Boland, N., Domínguez-Marín, P., Nickel, S., Puerto, J.: Exact procedures for solving the discrete ordered median problem. Comput. Oper. Res. 33(11), 3270–3300 (2006)

    Article  MATH  Google Scholar 

  4. Bomze, I.M.: Copositive optimization—recent developments and applications. Eur. J. Oper. Res. 216(3), 509–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze, I.M., Cheng, J., Dickinson, P.J.C., Lisser, A.: A fresh CP look at mixed-binary QP’s: new formulations and relaxations. Math. Program. 166, 159–184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burer, S.: Handbook on Semidefinite, Conic and Polynomial Optimization. In: Anjos, M.F., Lasserre, J.B. (Eds.) Copositive Programming, chapter 8, pp. 201–218. Springer, Berlin. ISBN 978-1-4614-0769-0 (2012)

  8. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151(1), 89–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40(3), 203–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burkard, R.E.: Quadratic assignment problems. Eur. J. Oper. Res. 15(3), 283–289 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dür, M.: Recent advances in optimization and its applications in engineering. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (Eds.) Copositive Programming—A Survey. Springer, Berlin. ISBN 978-3-642-12597-3 (2010)

  12. Fernández, E., Puerto, J., Rodríguez-Chía, A.M.: On discrete optimization with ordering. Ann. Oper. Res. 207(1), 83–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalcsics, J., Nickel, S., Puerto, J.: Multifacility ordered median problems on networks: a further analysis. Networks 41(1), 1–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalcsics, J., Nickel, S., Puerto, J., Rodríguez-Chía, A.M.: Distribution systems design with role dependent objectives. Eur. J. Oper. Res. 202, 491–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalcsics, J., Nickel, S., Puerto, J., Rodríguez-Chía, A.M.: The ordered capacitated facility location problem. Top 18(1), 203–222 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Labbé, M., Ponce, D., Puerto, J.: A comparative study of formulations and solution methods for the discrete ordered p-median problem. Comput. Oper. Res. 78, 230–242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marín, A., Nickel, S., Puerto, J., Velten, S.: A flexible model and efficient solution strategies for discrete location problems. Discrete Appl. Math. 157(5), 1128–1145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nickel, S.: Discrete ordered Weber problems. In: Operations Research Proceedings 2000, pp. 71–76. Springer, Berlin (2001)

  19. Nickel, S., Puerto, J.: Location Theory: A Unified Approach. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Peña, J., Vera, J.C., Zuluaga, L.F.: Completely positive reformulations for polynomial optimization. Math. Program. 151(2), 405–431 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perea, F., Puerto, J.: Revisiting a game theoretic framework for the robust railway network design against intentional attacks. Eur. J. Oper. Res. 226(2), 286–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Puerto, J., Fernández, F.R.: Multi-criteria minisum facility location problems. J. Multi-Criteria Decis. Anal. 8(5), 268–280 (1999)

    Article  MATH  Google Scholar 

  23. Puerto, J., Ramos, A.B., Rodríguez-Chía, A.M.: Single-allocation ordered median hub location problems. Comput. Oper. Res. 38(2), 559–570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Puerto, J., Ramos, A.B., Rodríguez-Chía, A.M., Sánchez-Gil, M.C.: Ordered median hub location problems with capacity constraints. Transp. Res. C Emerg. Technol. 70, 142–156 (2016)

    Article  Google Scholar 

  25. Stanimirovic, Z., Kratica, J., Dugosija, D.: Genetic algorithms for solving the discrete ordered median problem. Eur. J. Oper. Res. 182, 983–1001 (2007)

    Article  MATH  Google Scholar 

  26. Xu, G., Burer, S.: A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides. ArXiv e-prints (2016)

Download references

Acknowledgements

This research has been partially supported by Spanish Ministry of Economía and Competitividad/FEDER grants number MTM2016-74983-C02-01. The author would like to thank Prof. I. Bomze from the University of Vienna for fruitful discussions that led to conclude this project and to three anonymous referees by giving suggestions and indications that have clarified the proofs and presentation of the results in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Puerto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: An explicit formulation of CP-DOMP

Appendix: An explicit formulation of CP-DOMP

First of all, one can check that

$$\begin{aligned} \Phi [a_{(4)}]_1 =&\Big [{\mathop {\overbrace{\sum _{\ell =1}^n q_{111\ell },\ldots , \sum _{\ell =1}^n q_{nn1\ell }},}\limits ^{(PP)}} \; {\mathop {\overbrace{\sum _{\ell =1}^n v_{111\ell },\ldots , \sum _{\ell =1}^n v_{nn1\ell }},}\limits ^{(PX)}} \; {\mathop {\overbrace{\sum _{\ell =1}^n (P\mathcal {O})_{1\ell 1}, \ldots , \sum _{\ell =1}^n (P\mathcal {O})_{1\ell n}},}\limits ^{(P\mathcal {O})}} \\&{\mathop {\overbrace{\sum _{\ell =1}^n (PW)_{1\ell 1}, \ldots , \sum _{\ell =1}^n (PW)_{1\ell n}},}\limits ^{(PW)}}\; {\mathop {\overbrace{\sum _{\ell =1}^n (P\xi )_{1\ell 1}, \ldots , \sum _{\ell =1}^n(P\xi )_{1\ell n}},}\limits ^{(P\xi )}}\; {\mathop {\overbrace{\sum _{\ell =1}^n (P\eta )_{1\ell 11}, \ldots , \sum _{\ell =1}^n (P\eta )_{1\ell nn}},}\limits ^{(P\eta )}}\; \\&{\mathop {\overbrace{\sum _{\ell =1}^n (P\zeta )_{1\ell 11}, \ldots , \sum _{\ell =1}^n (P\zeta )_{1\ell nn}}}\limits ^{(P\zeta )}}\Big ]^T. \end{aligned}$$

Next, we present the explicit formulation of CP-DOMP, which is obtained from the original formulation replacing the original variables \(\phi \) by its linear expression in terms of \(\Phi \), namely \(\phi =\Phi [a_{(4)}]_1\) (see theorems 3.1 and 3.2 ).

Indeed, this reformulation requires to include: 1) the linear constraints that come from MIQP1-DOMP rewritten using that \(\Phi [a_{(4)}]_1=\phi \), 2) the squares of those constraints in the matrix variable \(\Phi \), 3) the quadratic constraints written in the matrix variables \(\Phi \) and 4) \(\Phi \in {\mathcal {C}}^*\), the cone of completely positive matrices of the appropriate dimension.

In the following we check that the four conditions mentioned above give us the constraints that appear in the explicit representation of CP-DOMP included below. Indeed,

  1. 1.

    Constraints (39) are \([a_{(4)}]^T_i \Phi [a_{(4)}]_1=1\) for all \(i=1,\ldots ,n\). Analogously, constraints (40) are \([a_{(5)}]^T_i \Phi [a_{(4)}]_1=1\) for all \(i=1,\ldots ,n\); constraint (41) is \([a_{(7)}]^T\Phi [a_{(4)}]_1=p\); constraints (42) are \([a_{(8)}]^T_i \Phi [a_{(4)}]_1=1\) for all \(i=1,\ldots ,n\); constraints (44) are \([a_{(17)}]^T_k \Phi [a_{(4)}]_1=1\) for all \(k=1,\ldots ,n-1\); constraints (43) are \([a_{(12)}]^T_{j\ell } \Phi [a_{(4)}]_1=1\) for all \(j,\ell =1,\ldots ,n\); and constraints (45) are \([a_{(13)}]^T_{jk} \Phi [a_{(4)}]_1=1\) for all \(j,k=1,\ldots ,n\). This proves that the block \(A\phi =A\Phi [a_{(4)}]_1=b\) appears in CP-DOMP-Explicit.

  2. 2.

    Constraints (46)–(53) are obtained squaring (4),(5), (7),(8), (17), (12), (18) and (13), respectively. This proves that \(diag(A^T\Phi A)=b\circ b\) also appears in CP-DOMP-Explicit.

  3. 3.

    Constraints (54), (55) and (56) are the quadratic constraints (14), (15) and (16) replacing the quadratic terms by the corresponding matrix variables in \(\Phi \) (recall that \(\Phi \) was introduced in (22)). Hence, CP-DOMP-Explicit includes the quadratic constraints in MIQP1-DOMP written in terms of the matrix variables \(\Phi \).

  4. 4.

    \(\Phi \in {\mathcal {C}}^*_{(4n^2+3n)\times (4n^2+3n)}\), the appropriate dimension of the space of variables.

We note in passing that we do not need to add the constraint \([a_{(4)}]^T_1 \Phi [a_{(4)}]_1=1\) since it is already included. Indeed, it is the first constraint in the block (39).

Based on the above discussion, the explicit reformulation of CP-DOMP as a completely positive convex problem in the essential matrix variables \(\Phi \) is:

$$\begin{aligned} \min \quad&\langle F, V \rangle + 1/2 \langle D,Q \rangle +1/2\langle H,U \rangle \end{aligned}$$
(CP-DOMP-Explicit)
$$\begin{aligned}&\text{ s.t. } \sum _{j=1}^n\sum _{\ell =1}^n q_{ij1\ell }=1, \quad \forall i=1,\ldots ,n, \end{aligned}$$
(39)
$$\begin{aligned}&\quad \sum _{k=1}^n\sum _{\ell =1}^nq_{ki1\ell }=1, \quad \forall i=1,\ldots ,n, \end{aligned}$$
(40)
$$\begin{aligned}&\quad \sum _{k=1}^n\sum _{\ell =1}^n (P\mathcal {O})_{1k\ell }=p, \quad \end{aligned}$$
(41)
$$\begin{aligned}&\quad \sum _{j=1}^n\sum _{\ell = 1}^n v_{ij1\ell }=1, \quad \forall i=1,\ldots ,n, \end{aligned}$$
(42)
$$\begin{aligned}&\quad \sum _{k=1}^n v_{1kj\ell }-\sum _{k=1}^n (P\mathcal {O})_{1k\ell }+\sum _{k=1}^n (P\zeta )_{1kj\ell }=0, \quad \forall j,\ell =1,\ldots ,n, \end{aligned}$$
(43)
$$\begin{aligned}&\quad \sum _{\ell =1}^n \rho _{1\ell k}-\sum _{\ell =1}^n \rho _{1\ell k+1}+\sum _{\ell = 1}^n (P\xi )_{1\ell k}=0, \quad \forall k=1,\ldots , n-1, \end{aligned}$$
(44)
$$\begin{aligned}&\quad \sum _{\ell =1}^n \rho _{1\ell k} -\sum _{\ell =1}^n\left( \sum _{r=1}^n v_{1rj\ell }\right) c_{j\ell }+\sum _{\ell =1}^n c_{j\ell } \left( 1-\sum _{r=1}^n q_{jk1r}\right) \nonumber \\&\qquad +\sum _{r=1}^n \nu _{1rjk}=0, \quad \forall j,k=1,\ldots ,n, \end{aligned}$$
(45)
$$\begin{aligned}&\quad \sum _{i=1}^n q_{ikik}=1, \quad \forall k=1,\ldots ,n, \end{aligned}$$
(46)
$$\begin{aligned}&\quad \sum _{i=k}^n q_{ikik}=1, \quad \forall i=1,\ldots ,n, \end{aligned}$$
(47)
$$\begin{aligned}&\quad \sum _{i=1}^n\sum _{j=1}^n\sigma _{ij}=p^2, \end{aligned}$$
(48)
$$\begin{aligned}&\quad \sum _{k=1}^n\sum _{\ell =1}^n u_{jkj\ell }=1, \quad \forall j=1,\ldots ,n, \end{aligned}$$
(49)
$$\begin{aligned}&\quad \omega _{kk}-2\omega _{k,k+1}+2\delta _{kk}+\omega _{k+1,k+1}-2\delta _{k,k+1}+\psi _{kk}=0, \quad \forall k=1,\dots ,n-1, \end{aligned}$$
(50)
$$\begin{aligned}&\quad u_{j\ell j\ell }-2 \chi _{j\ell \ell }+2 \tau _{j \ell j \ell }-2\beta _{\ell j \ell } +\sigma _{\ell \ell }+z_{j\ell j \ell }=0, \quad \forall j,\ell =1,\dots ,n, \end{aligned}$$
(51)
$$\begin{aligned}&\quad \sum _{r=1}^n\sum _{s=1}^n c_{rs} u_{rsrs}+\sum _{\begin{array}{c} i,j,r,s=1\\ (i,j)\ne (r,s)\end{array}}^n c_{ij} c_{rs} u_{ijrs}-2\sum _{i,j=1} n c_{ij} \left( \sum _{\ell =1}^n \gamma _{ij\ell }\right) +\sum _{r,s=1} ^n\omega _{rs}=0, \end{aligned}$$
(52)
$$\begin{aligned}&\quad \left( \sum _{\ell =1} ^n c_{j\ell }\right) ^2 q_{jkjk}+ \sum _{\ell =1} ^n c_{j\ell }^2 u_{j\ell j\ell }-2 \left( \sum _{\ell =1} ^n c_{j\ell }\right) \sum _{\ell =1}^nc_{j\ell } v_{jkj\ell }\nonumber \\&\qquad +2 \sum _{\ell =1}^nc_{j\ell } \rho _{jkk}+2\left( \sum _{\ell =1}^nc_{j\ell }\right) \nu _{jkjk}+2\sum _{r<s}^n c_{jr} c_{js} u_{jrjs}-2\sum _{\ell =1}^nc_{j\ell }\gamma _{j\ell k} \nonumber \\&\qquad -2\sum _{\ell =1}^n c_{j\ell }\kappa _{j\ell jk}+2\epsilon _{kjk}+\omega _{kk}+{\pi }_{jkjk}= \left( \sum _{\ell =1} ^n c_{j\ell }\right) ^2, \quad \forall j,k=1,\ldots ,n, \end{aligned}$$
(53)
$$\begin{aligned}&\quad \sum _{\ell =1}^n \rho _{1\ell k} -\sum _{j=1}^n\sum _{\ell =1}^n c_{j\ell } v_{jkj\ell }=0, \quad \forall k=1,\ldots ,n, \end{aligned}$$
(54)
$$\begin{aligned}&\quad \sum _{j,k=1}^n \left( \sum _{\ell =1}^n q_{1\ell jk}-q_{jkjk}\right) =0, \end{aligned}$$
(55)
$$\begin{aligned}&\quad \sum _{j,\ell =1}^n \left( \sum _{r=1}^n v_{j\ell 1r} - u_{j\ell j\ell }\right) =0, \end{aligned}$$
(56)
$$\begin{aligned}&\quad \Phi \in {\mathcal {C}}^*_{(4n^2+3n)\times (4n^2+3n)}. \end{aligned}$$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puerto, J. An exact completely positive programming formulation for the discrete ordered median problem: an extended version. J Glob Optim 77, 341–359 (2020). https://doi.org/10.1007/s10898-019-00863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00863-1

Keywords

Navigation