Skip to main content
Log in

Inertial projection and contraction algorithms for variational inequalities

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this article, we introduce an inertial projection and contraction algorithm by combining inertial type algorithms with the projection and contraction algorithm for solving a variational inequality in a Hilbert space H. In addition, we propose a modified version of our algorithm to find a common element of the set of solutions of a variational inequality and the set of fixed points of a nonexpansive mapping in H. We establish weak convergence theorems for both proposed algorithms. Finally, we give the numerical experiments to show the efficiency and advantage of the inertial projection and contraction algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Zhou, H., Zhou, Y., Feng, G.: Iterative methods for solving a class of monotone variational inequality problems with applications. J. Inequal. Appl. 2015, 68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yao, Y., Marino, G., Muglia, L.: A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality. Optimization 63, 559–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaces. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, Q.L., Yang, J., Yuan H.B.: The projection and contraction algorithm for solving variational inequality problems in Hilbert spaces. J. Nonlinear Convex Anal. (to appear)

  10. Cai, X., Gu, G., He, B.: On the \(\text{ O }(1/\text{ t })\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaces. SIAM J. Optim. 14, 773–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: Inertial proximal algorithm for non-convex optimization. SIAM J. Imaging Sci. 7, 1388–1419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53, 171–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. (to appear)

  17. Attouch, H., Chbani, Z.: Fast inertial dynamics and FISTA algorithms in convex optimization, perturbation aspects (2016). arXiv:1507.01367

  18. Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Svaiter, B.F.: A class of Fejér convergent algorithms, approximate resolvents and the hybrid proximal-extragradient method. J. Optim. Theory Appl. 162, 133–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, W., Censor, Y., Jiang, M.: Bounded perturbation resilience of projected scaled gradient methods. Comput. Optim. Appl. 63, 365–392 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7, 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong, Q.L., Lu, Y.Y, Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality, Optimization, 65, 2217–2226 (2016)

  23. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  24. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  25. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method formonotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chambolle, A., Dossal, Ch.: On the convergence of the iterates of the fast iterative shrinkage/ thresholding algorithm. J. Optim. Theory. Appl. 166, 968–982 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the reviewers, whose constructive suggestions led to improvements in the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Cho.

Additional information

The first author was supported by National Natural Science Foundation of China (No. 61379102) and Open Fund of Tianjin Key Lab for Advanced Signal Processing (No. 2016ASP-TJ01), the second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A2A2A01002100) and the third author was supported by Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCQNJC04400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q.L., Cho, Y.J., Zhong, L.L. et al. Inertial projection and contraction algorithms for variational inequalities. J Glob Optim 70, 687–704 (2018). https://doi.org/10.1007/s10898-017-0506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0506-0

Keywords

Mathematics Subject Classification

Navigation