Skip to main content
Log in

A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex function inequality. In our scheme, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore, each iteration of the proposed method consists of simple subgradient-like steps, which does not demand the solution of a nontrivial subproblem, using only individual operators, which exploits the structure of the problem. Assuming monotonicity of the individual operators and the existence of solutions, we prove that the generated sequence converges weakly to a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alber, YaI, Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–37 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Coupling forward–backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM J. Optim. 21, 1251–1274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, T.Q., Khanh, P.Q.: A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. Nonconvex Opt. Appl. 77, 113–129 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Bello Cruz, J.Y., Díaz Millán, R.: A direct splitting method for nonsmooth variational inequalities. J. Optim. Theory Appl. 161, 728–737 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bello Cruz, J.Y., de Oliveira, W.: Level bundle-like algorithms for convex optimization. J. Global Optim. 59, 787–809 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimization 61, 855–871 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in Hilbert spaces. Numer. Funct. Anal. Opt. 32, 1009–1018 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bello Cruz, J.Y., Iusem, A.N.: Full convergence of an approximate projection method for nonsmooth variational inequalities. Math. Comput. Simul. 114, 2–13 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bello Cruz, J.Y., Iusem, A.N.: Convergence of direct methods for paramonotone variational inequalities. Comput. Opt. Appl. 46, 247–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Opt. 30, 23–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bruck, R.E.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61, 159–164 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Burachik, R.S., Lopes, J.O., Svaiter, B.F.: An outer approximation method for the variational inequality problem. SIAM J. Control Opt. 43, 2071–2088 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Studies in Computational Mathematics 8, North-Holland, Amsterdam, pp. 115–152 (2001)

  18. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Opt. 48, 787–811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ermoliev, YuM: On the method of generalized stochastic gradients and quasi-Fejér sequences. Cybernetics 5, 208–220 (1969)

    Article  Google Scholar 

  21. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  22. Fang, S.C., Petersen, E.L.: Generalized variational inequalities. J. Optim. Theory Appl. 38, 363–383 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fukushima, M.: A Relaxed projection for variational inequalities. Math. Program. 35, 58–70 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  25. He, B.S.: A new method for a class of variational inequalities. Math. Program. 66, 137–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iusem, A.N., Lucambio Pérez, L.R.: An extragradient-type method for non-smooth variational inequalities. Optimization 48, 309–332 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997) (Addendum Optimization 43, 85 (1998))

  28. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  30. Konnov, I.V.: A combined relaxation method for variational inequalities with nonlinear constraints. Math. Program. 80, 239–252 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  32. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika I Matematcheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  33. Lewis, A.S., Pang, J.-S.: Error Bounds for Convex Inequality Systems. Generalized Convexity, Generalized Monotonicity: Recent Results: Nonconvex Optimization and Its Applications, Vol. 27, pp. 75–110. Kluwer Academic Publications, Dordrecht (1998)

  34. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nedic, A., Bertsekas, D.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12, 109–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nesterov, Yu.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Norwel (2004)

    Book  MATH  Google Scholar 

  38. Nesterov, Yu.: A method of solving a convex programming problem with convergence rate O(\(1/k^2\)). Soviet Math. Doklady 27, 372–376 (1983)

    MathSciNet  MATH  Google Scholar 

  39. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Polyak, B.T.: Minimization of unsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  MATH  Google Scholar 

  41. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mapping. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sien, D.: Computable error bounds for convex inequality systems in reflexive Banach spaces. SIAM J. Optim. 1, 274–279 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Shih, M.H., Tan, K.K.: Browder–Hartmann–Stampacchia variational inequalities for multi-valued monotone operators. J. Math. Anal. Appl. 134, 431–440 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequality problems. SIAM J. Control Opt. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Opt. 34, 1814–1830 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Todd, M.J.: The Computations of Fixed Points and Applications. Springer, Berlin (1976)

    Book  Google Scholar 

  48. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Opt. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)

    Google Scholar 

  50. Zhang, H., Cheng, L.: Projective splitting methods for sums of maximal monotone operators with applications. J. Math. Anal. Appl. 406, 323–334 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

JYBC and RDM were partially supported by project CAPES-MES-CUBA 226/2012. JYBC was partially supported by CNPq grants 303492/2013-9, 474160/2013-0 and 202677/2013-3 and by project UNIVERSAL FAPEG/CNPq. RDM was supported by his scholarship for his doctoral studies, granted by CAPES. This work was completed while the first author was visiting the University of British Columbia. The author is very grateful for the warm hospitality. The authors would like to thank to Professor Dr. Heinz H. Bauschke, Professor Dr. Ole Peter Smith and anonymous referees whose suggestions helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Bello Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, J.Y.B., Millán, R.D. A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces. J Glob Optim 65, 597–614 (2016). https://doi.org/10.1007/s10898-015-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0397-x

Keywords

Mathematics Subject Classification

Navigation