Skip to main content
Log in

Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In the present paper, we propose a new multipoint type global optimization model using a chaotic dynamic model and a synchronization phenomenon in nonlinear dynamic systems for a continuously differentiable optimization problem. We first improve the Discrete Gradient Chaos Model (DGCM), which drives each search point’s autonomous movement, based on theoretical analysis. We then derive a new coupling structure called PD type coupling in order to obtain stable synchronization of all search points with the chaotic dynamic model in a discrete time system. Finally, we propose a new multipoint type global optimization model, in which each search point moves autonomously by improved DGCM and their trajectories are synchronized to elite search points by the PD type coupling model. The proposed model properly achieves diversification and intensification, which are reported to be important strategies for global optimization in the Meta-heuristics research field. Through application to proper benchmark problems [Liang et al. Novel composition test functions for numerical global optimization. In: Proceedings of Swarm Intelligence Symposium, 2005 (SIS 2005), pp. 68–75 (2005); Liang et al. Nat. Comput. 5(1), 83–96, 2006] (in which the drawbacks of typical benchmark problems are improved) with 100 or 1000 variables, we confirm that the proposed model is more effective than other gradient-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aihara K., Takabe T. and Toyoda M. (1990). Chaotic neural networks. Phys. Lett. A. 144(6–7): 333–340

    Article  Google Scholar 

  • Tokuda I., Onodera K., Tokunaga R., Aihara K. and Nagashima T. (1998). Global bifurcation scenario for chaotic dynamic systems that solve optimization problems and analysis of their optimization capability. Electron. Commun. Japan (Part III: Fund. Electron. Sci.) 81(2): 1–12

    Article  Google Scholar 

  • Masuda, K., Aiyoshi, E.: Global optimization method using chaos of discrete gradient dynamics. In: Proceedings of IFAC Workshops ALCOSP and PSYCO 2004, pp. 825–830 (2004)

  • Mizukami M., Hirano M. and Shinjo K. (2001). Simultaneous alignment of multiple optical axes in a multistage optical system using Hamiltonian algorithm. Opt. Eng. 40(3): 448–454

    Article  Google Scholar 

  • Glover F. and Laguna M. (1997). Tabu search. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Goldberg D.E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, USA

    Google Scholar 

  • Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Int. Conf. Neural Networks, pp. 1942–1948 (1995)

  • Chao J., Ratanaswan W. and Tsujii S. (1990). A new global optimization method and supervised learning of multilayer neural networks. IEICE Trans. E 73(11): 1796–1799

    Google Scholar 

  • Fujisaka H. and Yamada T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progr. Theor. Phys. 69(1): 32–47

    Article  Google Scholar 

  • Fujisaka H. and Yamada T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. II. Progr. Theor. Phys. 70(5): 1240–1248

    Google Scholar 

  • Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: Proceedings of Swarm Intelligence Symposium, 2005 (SIS 2005), pp. 68–75 (2005)

  • Liang J., Baskar S., Suganthan P. and Qin A. (2006). Performance evaluation of multiagent genetic algorithm. Nat. Comput. 5(1): 83–96

    Article  Google Scholar 

  • Griewank A., Juedes D. and Utke J. (1996). Algorithm 755; ADOL-C: a package for the automatic differentiation of algorithms written in C/C. ACM Trans. Mathemat. Software. 22(2): 131–167

    Article  Google Scholar 

  • Walther, A., Griewank, A.: ADOL-C 1.10.1. http://www.math.tu-dresden.de/∼adol-c/. Cited 16 Apr 2006 (Last Modified in 2005)

  • Barhen J. (1997). TRUST: A deterministic algorithm for global optimization. Science 276(5315): 1094–1097

    Article  Google Scholar 

  • Yiu K.F.C., Liu Y. and Teo K.L. (2004). A hybrid descent method for global optimization. J. Global Optimiz. 28(2): 229–238

    Article  Google Scholar 

  • Wang, Y.J., Zhang, J.S., Zhang, Y.F.: A fast hybrid algorithm for global optimization. In: Proceedings of Machine Learning and Cybernetics, 2005, pp. 3030–3035 (2005)

  • Parsopoulos K.E. and Vrahatis M.N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 8(3): 211–224

    Article  Google Scholar 

  • Sakuma, J., Kobayashi, S.: Extrapolation-directed crossover for real-coded GA: overcomingdeceptive phenomena by extrapolative search. In: Proceedings of IEEE Congress on Evolutionary Computation, 2001 (CEC2001), pp. 655–662 (2001)

  • Armijo L. (1966). Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J. Mathemat. 16(1): 1–3

    Google Scholar 

  • Levy A.V. and Montalvo A. (1985). The tunneling algorithm for the global minimization of functions. SIAM J. Sci. Stat. Comput. 6(1): 15–29

    Article  Google Scholar 

  • Griewank A.O. (1981). Generalized descent for global optimization. JOTA. 34(1): 11–39

    Article  Google Scholar 

  • Rosenbrock H.H. (1960). An automatic method for finding the greatest or least value of a function. Comp. J. 3(3): 175–184

    Article  Google Scholar 

  • Yasuda, K., Iwasaki, N.: Adaptive particle swarm optimization using velocity information of swarm. In: Proceedings of IEEE Int. Conf. on Systems, Man, and Cybernetics, 2004, pp. 3475–3481 (2004)

  • Rastrigin L.A. (1974). Systems of extremal control. Nauka, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, T., Aiyoshi, E. Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model. J Glob Optim 41, 219–244 (2008). https://doi.org/10.1007/s10898-007-9222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9222-5

Keyword

Navigation