Skip to main content
Log in

Luminescent Features of Ternary Europium Complexes: Photophysical and Optoelectronic Evaluation

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Trivalent europium complexes exhibit good luminescent characteristics. A series of octacoordinated ternary europium complexes with fluorinated diketone and heteroaromatic auxiliary unit were synthesized. The synthesized europium complexes were characterized by elemental, thermal, electrochemical and spectroscopic analyses. Band gap values lie in range of semiconductors which confirm the conducting behavior of prepared complexes. Photoluminescence spectra were recorded in solid state and DMSO solvent. Emission spectral profiles have displayed most intense peak at ~ 612 nm corresponding to hypersensitive 5D0 → 7F2 transition. Colorimetric parameters suggest red luminous nature of europium complexes. The luminescent heteroleptic europium complexes might be utilized as emissive materials for fabricating display.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The authors affirm that the information/data of this research article is available inside the article.

References

  1. Jia Y, Wang J, Zhao L, Yan B (2022) Eu3+-β-diketone functionalized covalent organic framework hybrid material as a sensitive and rapid response fluorescent sensor for glutaraldehyde. Talanta 236:122877. https://doi.org/10.1016/j.talanta.2021.122877

    Article  CAS  PubMed  Google Scholar 

  2. Nehra K, Dalal A, Hooda A, Saini RK, Singh D, Kumar S (2022) Synthesis and photoluminescence characterization of the complexes of samarium dibenzoylmethanates with 1,10-phenanthroline derivatives. Polyhedron 217:115730. https://doi.org/10.1016/j.poly.2022.115730

    Article  CAS  Google Scholar 

  3. Singh D, Nehra K, Saini RK, Dalal A, Bhagwan S, Singh K, Simantilleke AP, Kumar S (2020) Luminescence intensification of terbium(III) ion complexes with dipivaloylmethane (tmhd) and monodentate auxiliary ligands. Optik 206:164338. https://doi.org/10.1016/j.ijleo.2020.164338

    Article  CAS  Google Scholar 

  4. Hasegawa M, Ohmagari H, Tanaka H, Machida K (2022) Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water-and molecular-stimuli. J Photochem Photobiol C Photochem Rev 100484. https://doi.org/10.1016/j.jphotochemrev.2022.100484

  5. Monteiro B, Leal JP, Mendes RF, Paz FA, Linden A, Smetana V, Mudring AV, Avó J, Pereira CC (2022) Lanthanide-based complexes as efficient physiological temperature sensors. Mater Chem Phys 277:125424. https://doi.org/10.1016/j.matchemphys.2021.125424

    Article  CAS  Google Scholar 

  6. Shahi PK, Singh AK, Rai SB, Ullrich B (2015) Lanthanide complexes for temperature sensing, UV light detection, and laser applications. Sens Actuator A Phys 222:255–261. https://doi.org/10.1016/j.sna.2014.12.021

    Article  CAS  Google Scholar 

  7. Ning Y, Zhu M, Zhang JL (2019) Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing. Coord Chem Rev 399:213028. https://doi.org/10.1016/j.ccr.2019.213028

    Article  CAS  Google Scholar 

  8. Azevedo LA, Ruiz-Crespo AG, Maier-Queiroz R, Silva CS, Ferro JN, Oliveira PD, Barreto E, da Luz LL, Júnior SA (2021) Multi-Stimuli-Responsive Luminescent MCM48 Hybrid for Advanced Anti-Counterfeiting Applications. J Mater Chem C 9:9261–9270. https://doi.org/10.1039/D1TC01357B

    Article  Google Scholar 

  9. Zhang P, Guo YN, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord Chem Rev 257:1728–1763. https://doi.org/10.1016/j.ccr.2013.01.012

    Article  CAS  Google Scholar 

  10. Singh D, Bhagwan S, Dalal A, Nehra K, Singh K, Simantilleke A, Kumar S, Singh I (2020) Intense red luminescent materials of ternary Eu3+ complexes of oxide ligands for electroluminescent display devices. Optik 208:164111. https://doi.org/10.1016/j.ijleo.2019.164111

    Article  CAS  Google Scholar 

  11. Lima PP, Paz FA, Brites CD, Quirino WG, Legnani C, e Silva MC, Ferreira RA, Júnior SA, Malta OL, Cremona M, Carlos LD (2014) White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Org Electron 15:798–808. https://doi.org/10.1016/j.orgel.2014.01.009

    Article  CAS  Google Scholar 

  12. Singh D, Bhagwan S, Saini RK, Nishal V, Singh I (2016) Development in organic light-emitting materials and their potential applications. Adv Magn Opt Mater 473–519. https://doi.org/10.1002/9781119241966.ch14

  13. Wang H, Wan Y, Du H, Lyu H, Wang D (2022) Preparation and photoluminescent behaviors of bipyrimidine bridged dinuclear Eu (III) complexes and their PMMA polymer films. J Lumin 244:118703. https://doi.org/10.1016/j.jlumin.2021.118703

    Article  CAS  Google Scholar 

  14. Hooda A, Nehra K, Dalal A, Singh S, Saini RK, Kumar S, Singh D (2022) Terbium complexes of an asymmetric β-diketone: preparation, photophysical and thermal investigation. Inorganica Chim Acta 536:120881. https://doi.org/10.1016/j.ica.2022.120881

    Article  CAS  Google Scholar 

  15. Singh D, Tanwar V, Bhagwan S, Singh I (2016) Recent advancements in luminescent materials and their potential applications. Adv Magn Opt Mater 317-352. https://doi.org/10.1002/9781119241966.ch10

  16. Ganaie AB, Iftikhar K (2022) Stoichiometrically controlled synthesis and comparative study of photoluminescence of seven and eight coordinate complexes of Sm3+, Eu3+ and Tb3+ based on 6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedione (Hfod) and imidazole. J Photochem Photobiol A Chem 425:113715. https://doi.org/10.1016/j.jphotochem.2021.113715

    Article  CAS  Google Scholar 

  17. Al-Busaidi IJ, Ilmi R, Zhang D, Dutra JD, Oliveira WF, Al Rasbi NK, Zhou L, Wong WY, Raithby PR, Khan MS (2022) Synthesis and photophysical properties of ternary β-diketonate europium (III) complexes incorporating bipyridine and its derivatives. Dyes Pigm 197:109879. https://doi.org/10.1016/j.dyepig.2021.109879

    Article  CAS  Google Scholar 

  18. Dalal A, Nehra K, Hooda A, Singh D, Jakhar K, Kumar S (2022) Preparation and photoluminescent characteristics of green Tb(III) complexes with β-diketones and N donor auxiliary ligand. Inorg Chem Commun 139:109349. https://doi.org/10.1016/j.inoche.2022.109349

    Article  CAS  Google Scholar 

  19. Hooda A, Nehra K, Dalal A, Singh S, Bhagwan S, Jakhar K, Singh D (2022) Preparation and photoluminescent analysis of Sm3+ complexes based on unsymmetrical conjugated chromophoric ligand. J Mater Sci Mater Electron 1-11. https://doi.org/10.1007/s10854-022-08089-w

  20. Metlina DA, Metlin MT, Ambrozevich SA, Taydakov IV, Lyssenko KA, Vitukhnovsky AG, Selyukov AS, Krivobok VS, Aminev DF, Tobokhova AS (2018) Luminescence and electronic structure of Nd3+ complex with pyrazole-substituted 1, 3-diketone and 1, 10-phenanthroline. J Lumin 203:546–553. https://doi.org/10.1016/j.jlumin.2018.07.005

    Article  CAS  Google Scholar 

  21. Nehra K, Dalal A, Hooda A, Bhagwan S, Saini RK, Mari B, Kumar S, Singh D (2022) Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. J Mol Struct 1249:131531. https://doi.org/10.1016/j.molstruc.2021.131531

    Article  CAS  Google Scholar 

  22. Yao X, Wang X, Han Y, Yan P, Li Y, Li G (2018) Structure, color-tunable luminescence, and UV-vis/NIR benzaldehyde detection of lanthanide coordination polymers based on two fluorinated ligands. Cryst Eng Comm 20:3335–3343. https://doi.org/10.1039/C8CE00516H

    Article  CAS  Google Scholar 

  23. Singh D, Bhagwan S, Dalal A, Nehra K, Saini RK, Singh K, Kumar S, Singh I (2020) Synthesis and investigation of enhanced luminescence of Ln (III)-complexes containing fluorinated β-diketone and oxygen donor ancillary ligands for efficient advanced displays. J Lumin 223:117255. https://doi.org/10.1016/j.jlumin.2020.117255

    Article  CAS  Google Scholar 

  24. Zhang L, Li B, Zhang L, Chen P, Liu S (2009) Synthesis, Characterization, and Luminescent Properties of Europium Complexes with Fluorine Functionalized Phenanthroline. J Electrochem Soc. https://doi.org/10.1149/1.3060228

  25. Dalal A, Nehra K, Hooda A, Singh D, Malik RS, Kumar S (2021) Synthesis and Opto-electronic features of 5, 5′-bis (3, 4-(ethylenedioxy) thien-2-yl)-2, 2′-bipyridine. Optik 248:167942. https://doi.org/10.1016/j.ijleo.2021.167942

    Article  CAS  Google Scholar 

  26. Ilmi R, Iftikhar K (2016) Structure elucidation by sparkle/RM1, effect of lanthanide contraction and photophysical properties of lanthanide (III) trifluoroacetylacetonate complexes with 1, 10-phenanthroline. J Photochem Photobiol A Chem 325:68–82. https://doi.org/10.1016/j.jphotochem.2016.03.018

    Article  CAS  Google Scholar 

  27. Hooda A, Dalal A, Nehra K, Singh D, Kumar S, Malik RS, Kumar P (2022) Preparation and optical investigation of green luminescent ternary terbium complexes with aromatic β-diketone. Chem Phys Lett 794:139495. https://doi.org/10.1016/j.cplett.2022.139495

    Article  CAS  Google Scholar 

  28. Ahmed Z, Dar WA, Iftikhar K (2012) Syntheses and spectroscopic studies of volatile low symmetry lanthanide (III) complexes with monodentate 1 H-indazole and fluorinated β-diketone. J Coord Chem 65:3932–3948. https://doi.org/10.1080/00958972.2012.723704

    Article  CAS  Google Scholar 

  29. Dalal A, Nehra K, Hooda A, Singh S, Singh D, Kumar S (2022) Synthesis, Optoelectronic and Photoluminescent Characterizations of Green Luminous Heteroleptic Ternary Terbium Complexes: J Fluoresc 1-11. https://doi.org/10.1007/s10895-022-02920-7

  30. Wan Y, Lyu H, Du H, Wang D, Yin G (2019) Synthesis and photophysical properties of europium pentafluorinated β-diketonate complexes. Res Chem Intermed 45:1669–1687. https://doi.org/10.1007/s11164-018-3691-7

    Article  CAS  Google Scholar 

  31. Sengar M, Narula AK (2019) Luminescence and anion recognition performance of mononuclear Eu(III) complexes with N- and O- donor pyridine derivatives. Mater Res Bull 112:242–250. https://doi.org/10.1016/j.materresbull.2018.12.024

    Article  CAS  Google Scholar 

  32. Yang C, Luo J, Ma J, Lu M, Liang L, Tong B (2012) Synthesis and photoluminescent properties of four novel trinuclear europium complexes based on two tris-β-diketones ligands. Dyes Pigm 92:696–704. https://doi.org/10.1016/j.dyepig.2011.06.022

    Article  CAS  Google Scholar 

  33. Singh D, Bhagwan S, Dalal A, Nehra K, Saini RK, Singh K, Simantilleke AP, Kumar S, Singh I (2021) Oxide ancillary ligand-based europium β-diketonate complexes and their enhanced luminosity. Rare Met 40:2873–2881. https://doi.org/10.1007/s12598-020-01543-w

    Article  CAS  Google Scholar 

  34. Jin H, Qin L, Zhang L, Zeng X, Yang R (2016) Review of wide band-gap semiconductors technology. MATEC Web Conf 40:1–5. https://doi.org/10.1051/matecconf/20164001006

    Article  Google Scholar 

  35. Nehra K, Dalal A, Hooda A, Singh D, Malik RS, Kumar S (2022) Spectroscopic and optoelectronic investigations of 3,8-Bis(3,4-(ethylenedioxy)thien-2-yl)-1,10-phenanthroline. J Mater Sci Mater Electron 33:115–125. https://doi.org/10.1007/s10854-021-07268-5

    Article  CAS  Google Scholar 

  36. Hooda A, Nehra K, Dalal A, Singh S, Saini RK, Kumar S, Singh D (2022) Deep red emissive octacoordinated heteroleptic Sm(III) complexes: preparation and spectroscopic investigation. J Mol Struct 1260:132848. https://doi.org/10.1016/j.molstruc.2022.132848

    Article  CAS  Google Scholar 

  37. Tsierkezos NG (2007) Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J Solution Chem 36:289–302. https://doi.org/10.1007/s10953-006-9119-9

    Article  CAS  Google Scholar 

  38. Irfanullah M, Iftikhar K (2011) Hypersensitivity in the luminescence and 4f–4f absorption properties of mono- and dinuclear EuIII and ErIII complexes based on fluorinated β-diketone and diimine/ bis-diimine ligands. J Fluoresc 21:81–93. https://doi.org/10.1007/s10895-010-0691-4

    Article  CAS  PubMed  Google Scholar 

  39. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  40. Dalal A, Nehra K, Hooda A, Singh D, Kumar S, Malik RS (2022) Synthesis, photophysical characteristics and geometry optimization of Tris(2-benzoylacetophenonate)europium complexes with 2, 2′-Bipyridine derivatives. J Lumin 247:118873. https://doi.org/10.1016/j.jlumin.2022.118873

    Article  CAS  Google Scholar 

  41. Wang D, Luo Z, Liu Z, Wang D, Fan L, Yin G (2016) Synthesis and photoluminescent properties of Eu (III) complexes with fluorinated β-diketone and nitrogen heterocyclic ligands. Dyes Pigm 132:398–404. https://doi.org/10.1016/j.dyepig.2016.05.026

    Article  CAS  Google Scholar 

  42. Dalal A, Nehra K, Hooda A, Singh S, Bhagwan S, Singh D, Kumar S (2022) 2,2’-Bipyridine Based Fluorinated β-Diketonate Eu(III) Complexes as Red Emitter for Display Applications. Inorg Chem Commun 140:109399. https://doi.org/10.1016/j.inoche.2022.109399

    Article  CAS  Google Scholar 

  43. Zhuravlev KP, Tsaryuk VI, Vologzhanina AV, Dorovatovskii PV, Zubavichus YV, Kudryashova VA, Klemenkova ZS (2020) Structural peculiarities and luminescence of europium dipivaloylmethanates with 2,2′-bipyridine derivatives. Polymorphism of [Eu(DPM)3Bpy]. Inorganica Chim Acta 502:119294. https://doi.org/10.1016/j.ica.2019.119294

  44. Taydakov IV, Akkuzina AA, Avetisov RI, Khomyakov AV, Saifutyarov RR, Avetissov IC (2016) Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. J Lumin 177:31–39. https://doi.org/10.1016/j.jlumin.2016.04.017

    Article  CAS  Google Scholar 

  45. Righini GC, Ferrari M (2005) Photoluminescence of rare-earth-doped glasses. Riv Del Nuovo Cim 28:1–53. https://doi.org/10.1393/ncr/i2006-10010-8

    Article  CAS  Google Scholar 

  46. Zhang A, Zhang J, Pan Q, Wang S, Jia H, Xu B (2012) Synthesis, photoluminescence and intramolecular energy transfer model of a dysprosium complex. J Lumin 132:965–971. https://doi.org/10.1016/j.jlumin.2011.11.023

    Article  CAS  Google Scholar 

  47. Nehra K, Dalal A, Hooda A, Singh D, Kumar S (2022) Exploration of newly synthesized red luminescent material of samarium for display applications. Inorg Chem Commun 139:109361. https://doi.org/10.1016/j.inoche.2022.109361

    Article  CAS  Google Scholar 

  48. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144. https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  49. Nehra K, Dalal A, Hooda A, Singh S, Singh D, Kumar S (2022) Spectroscopic and Optical Investigation of 1,10-Phenanthroline based Tb(III) β-Diketonate Complexes. Inorganica Chim Acta 536:120860. https://doi.org/10.1016/j.ica.2022.120860

    Article  CAS  Google Scholar 

  50. Zapata-Lizama M, Hermosilla-Ibáñez P, Venegas-Yazigi D, Espallargas GM, Maia LJQ, Gasparotto G, De Santana RC, Cañón-Mancisidor W (2020) A systematic study of the optical properties of mononuclear hybrid organo–inorganic lanthanoid complexes. Inorg Chem Front 7:3049–3062. https://doi.org/10.1039/D0QI00232A

    Article  CAS  Google Scholar 

  51. Nehra K, Dalal A, Hooda A, Jakhar K, Singh D, Kumar S (2022) Preparation, optoelectronic and spectroscopic analysis of fluorinated heteroleptic samarium complexes for display applications. Inorganica Chim Acta 537:120958. https://doi.org/10.1016/j.ica.2022.120958

    Article  CAS  Google Scholar 

  52. Wang H, He P, Yan H, Gong M (2011) Synthesis, characteristics and luminescent properties of a new europium (III) organic complex applied in near UV LED. Sens Actuators B Chem 156:6–11. https://doi.org/10.1016/j.snb.2011.04.049

    Article  CAS  Google Scholar 

  53. Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR (2012) Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:1–7. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  54. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  55. Koopmans T (1934) Überdie Zuordnung von Wellenfunktionen und Eigenwertenzu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  56. Vijayaraj R, Subramanian V, Chattaraj PK (2009) Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J Chem Theory Comput 5:2744–2753. https://doi.org/10.1021/ct900347f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author (AH) would like to thanks CSIR for SRF [09/382(0255)/2020-EMR-I] and SERB-DST [EMR/2016/006135], New Delhi for providing support for preceding the presented work.

Author information

Authors and Affiliations

Authors

Contributions

Anjli Hooda = Data curation, Writing—original draft; Kapeesha Nehra = Investigation, Methodology; Anuj Dalal = Formal analysis; Shri Bhagwan = Project administration; Isha Gupta = Resources; Devender Singh = Writing—review & editing, Supervision Sumit Kumar = Validation, Visualization and Software.

Corresponding author

Correspondence to Devender Singh.

Ethics declarations

The article does not involve any study performed on animals or human by any of the authors.

Consent to Participate

Not Applicable.

Consent to Publication

Not Applicable.

Conflicts of interest

The authors declare no conflict of interest among them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Structural and photophysical investigation of luminescent red color emissive ternary europium complexes was carried out.

• Optical and electronic band gap values were found in good accordance with each other as well as to the theoretically determined band gap values.

• Geometry optimization was done via Avogadro software and energies of various frontier molecular orbitals have been estimated.

• Luminous red emissive materials could found good significance in solid state electronics and displays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooda, A., Nehra, K., Dalal, A. et al. Luminescent Features of Ternary Europium Complexes: Photophysical and Optoelectronic Evaluation. J Fluoresc 32, 1529–1541 (2022). https://doi.org/10.1007/s10895-022-02956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02956-9

Keywords

Navigation