Skip to main content
Log in

Effective Detection of Phenylalanine Using Pyridine Based Sensor

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Pyridine based organic molecule as probe has been synthesized for the detection of phenylalanine (PA) biomarker. The synthesized probe is characterized by 1H and 13C NMR and mass spectroscopic studies. The photophysical properties for the probe has recorded by colorimetric and fluorimetric techniques. The quenching has been observed between the probe and PA through ICT (Intermolecular Charge Transfer Mechanism). Under optimized conditions, the probe detects PA selectively in the presence of other biologically important biomolecules. The practical application for PA has been successfully applied in human blood serum and urine.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

All relevant data are within the paper and its Supporting Information files.

References

  1. Wang X, Wolfbeis OS (2014) Chem Soc Rev 43:3666

    Article  CAS  Google Scholar 

  2. Luo C, Jia J, Gong Y, Wang Z, Fu Q, Pan C, Appl ACS (2017) Mater. Interfaces 9(23):19955–19962

    CAS  Google Scholar 

  3. Sharma H, Kaur N, Singh A, Kuwar A, Singh N (2016) J Mater Chem C 4:5154–5194

    Article  CAS  Google Scholar 

  4. Udhayakumaria D, Suganyaa S, Velmathia S, Ali DM (2014) J Mol Recognit 27:151–159

    Article  Google Scholar 

  5. Udhayakumari D, Naha S, Velmathi S (2017) Anal Methods 9:552–578

    Article  CAS  Google Scholar 

  6. Petty MC (2002) Studies in Interface Science 16:317–367

    Article  CAS  Google Scholar 

  7. Zhang M, Zhao X, Zhang G, Wei G, Su Z (2017) J Mater Chem B 5:1699–1711

  8. Komoda T, Matsunaga T (2015) Biochem Med Profession 25–63

  9. Bhagavan NV, Ha CE (2015) Essentials of medical biochemistry with clinical cases 227–268

  10. Olguín HJ, Guzmán DC, García EH, Mejía GB (2016) Oxid Med Cell Longev 9730467

  11. Slominski A, Zmijewski MA, Pawelek J (2012) Pigment Cell Melanoma Res 25(1):14–27

  12. Kapalka GM (2010) Nutritional and Herbal Therapies for Children and Adolescents 141–187

  13. Li N, Su X, Lu Y (2015) Analyst 140:2916–2943

    Article  CAS  Google Scholar 

  14. Pacheco JG, Barroso MF, Nouws HPA, Morais S, Matos CD (2017) Curr Develop Biotechnol Bioeng Bioproc 627–648

  15. Ali J, Najeeb J, Ali MA, Aslam MF, Raza A (2017) Biosens Bioelectron 8:235

  16. Pejcic B, Marco RD, Parkinson G (2006) Analyst 131:1079–1090

    Article  CAS  Google Scholar 

  17. Damborsky P, Svitel J, Katrlik J (2016) Essays Biochey 60:91–100

    Article  Google Scholar 

  18. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Chem Soc Rev 42:8733–8768

    Article  CAS  Google Scholar 

  19. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) RSC Adv 9:8778–8881

    Article  CAS  Google Scholar 

  20. Mehrotra P (2016) J Oral BiolCraniofac Res 6:153–159

    Article  Google Scholar 

  21. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP (2017) Chem Soc Rev 46:915–1016

    Article  CAS  Google Scholar 

  22. Forni A, Lucenti E, Bottab C, Cariati E (2018) J Mater Chem C 6:4603–4626

    Article  CAS  Google Scholar 

  23. Valeur B, Santos MNB (2011) J Chem Educ 88:731–738

    Article  CAS  Google Scholar 

  24. Mohammed HA, Taha NI (2017) IJOC 7:412–419

    Article  CAS  Google Scholar 

  25. Taha NI, Tapabashi NO, Subeyhi MN (2018) Int J Org Chem 8:309–318

    Article  CAS  Google Scholar 

  26. Norouzi P, Ganjali MR, Ahmadalinezhad A, Adib M (2006) J Braz Chem Soc 17(7):1309–1315

  27. Shylaja A, Roja SS, Priya RV, Kumar RR (2018) J Org Chem 83:14084−14090

  28. Dorabei RZ, Norouzi P, Ganjali MR (2009) J Hazard Mater 171:601–605

    Article  Google Scholar 

  29. Kakanejadifard A, Esna-ashari F, Hashemi P, Zabardasti A (2013) SpectrochimicaActa Part A 106:80–85

    Article  CAS  Google Scholar 

  30. Chipem FAS, Mishra A, Krishnamoorthy G (2012) Phys Chem Chem Phys 14:8775–8790

    Article  CAS  Google Scholar 

  31. Mahapatra AK, Sahoo P, Goswami S, Chantrapromma S, Fun HK (2009) Tetrahedron Lett 50:89–92

    Article  CAS  Google Scholar 

  32. Parveen SD, Affrose A, Pitchumani K (2015) Sensor Actuat B-Chem 221:521–527

  33. Ekmekci Z (2015) Tetrahedron Lett 56:1878–1881

  34. Santharam Roja S, Shylaja A, Kumar R (2020) Chemistry Select 5:2279–2283

  35. Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ (2013) ACS Appl Mater Interfaces 5:1226−1231

  36. Koner RR, Sinha S, Kumar S, Nandi CK, Ghosh S (2012) Tetrahedron Lett 53:2302–2307

  37. Shellaiah M, Rajan YC, Lin HC (2012) J Mater Che 22:8976–8987

  38. Magde D, Wong R, Seybold PG (2002) Photochemistry and Photobiology 75:327–334

  39. Melhuish WH (1961) J Phys Chem 65:229

  40. Williams AT, Winfield SA, Miller JN (1983) Analyst 108:1067−1071

  41. Huang CY, Wan CF, Chir JL, Wu AT (2013) J Fluoresc 23:1107–1111

    Article  CAS  Google Scholar 

  42. Chen D, Chen P, Zong L, Sun Y, Liu G, Yu X, Qin J (2017) R Soc Open Sci 4:171161

  43. Hu YF, Zhanga ZH, Zhanga HB, Luoa LJ, Yao SZ (2011) Talanta 84:305–313

    Article  CAS  Google Scholar 

  44. Ermis N, Uzun L, Denizli A (2017) J Electroanal Chem 807:244–252

    Article  CAS  Google Scholar 

  45. Li CF, Du LM, Wu H, Chang YX (2011) Chin Chem Lett 22:851–854

    Article  CAS  Google Scholar 

  46. Niu X, Mo Z, Yang X, Shuai C, Liu N, Guo R (2019) Bioelectrochemistry 128:74–82

    Article  CAS  Google Scholar 

  47. Zhaoa G, Yib C, Weia G, Wua R, Gua Z, Guangb S, Xua H (1831) J Hazard Mater 2019:12. https://doi.org/10.1016/j.jhazmat.2019.121831

    Article  CAS  Google Scholar 

  48. Chena Y, Chena L, Bi R, Xua L, Liu Y (2012) AnalyticaChimicaActa 754:83–90

    Google Scholar 

  49. Zhanga K, Yana HT, Zhoub T (2011) SpectrochimicaActa Part A 83:155–160

    Article  Google Scholar 

  50. Zaidi SA (2017) Biosens Bioelectron 94:714–718

    Article  CAS  Google Scholar 

  51. Lin C, Jair YC, Chou YC, Chen PS, Yeh YC (2018) AnalyticaChimicaActa 1041:108–113

    CAS  Google Scholar 

  52. Naghib SM, Rabiee M, Omidinia E (2014) Int J Electrochem Sc 9:2341–2353

    Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT

  54. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author VS acknowledged DST, New Delhi for the INSPIRE fellowship (IF180132). Further, we also acknowledge theBRNS, Mumbai for the UV-Visible instrument facility. Also we thanks to DST-FIST, DST-PURSE and RUSA programs for the higher solution NMR, FT-IR and fluorescence spectrophotometer facilities, respectively in School of Chemistry, Madurai Kamaraj University.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Vijayakumar Sathya: Conceptualization, writing, original draft. Venkatesan Srinivasadesikan: Software resources. Shyi-Long Lee: Software resources. Vediappen Padmini:Supervision, Writing-review.

Corresponding author

Correspondence to Vediappen Padmini.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors have no conflict of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, V., Srinivasadesikan, V., Lee, SL. et al. Effective Detection of Phenylalanine Using Pyridine Based Sensor. J Fluoresc 32, 1481–1488 (2022). https://doi.org/10.1007/s10895-022-02944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02944-z

Keywords

Navigation